Theoretical Analysis of Melting Point Depression of Pure Metals in Different Initial Configurations
详细信息    查看全文
  • 作者:G. Kaptay (1) (2)
    J. Janczak-Rusch (3)
    G. Pigozzi (3)
    L. P. H. Jeurgens (3)
  • 关键词:nano ; melting point depression ; joining
  • 刊名:Journal of Materials Engineering and Performance
  • 出版年:2014
  • 出版时间:May 2014
  • 年:2014
  • 卷:23
  • 期:5
  • 页码:1600-1607
  • 全文大小:
  • 参考文献:1. T.T. Bao, Y. Kim, J. Lee, and J.G. Lee, Preparation and Thermal Analysis of Sn-Ag Nano Solders, / Mater. Trans., 2010, 51, p 2145鈥?149 CrossRef
    2. C. Zou, Y. Gao, B. Yang, and Q. Zhai, Synthesis and DSC Study on Sn3.5Ag Alloy Nanoparticles Used for Lower Melting Temperature Solder, / J. Mater. Sci. Mater. Electron., 2010, 21, p 868鈥?74 CrossRef
    3. R. Longtin, E. Hack, J. Neuenschwander, and J. Janczak-Rusch, Benign Joining of Ultrafine Grained Aerospace Aluminum Alloys Using Nanotechnology, / Adv. Mater., 2011, 20, p 1鈥?
    4. G. Pigozzi, A. Antusek, J. Janczak-Rusch, M. Parlinska-Wojtan, D. Passerone, C.A. Pignedoli, V. Bissig, J. Patscheider, and L.P.H. Jeurgens, Phase Constitution and Interface Structure of Nano-sized Ag-Cu/AlN Multilayers: Experimental and Ab Initio Modeling, / Appl. Phys. Lett., 2012, 101, p 181602 CrossRef
    5. P. Pawlow, 脺ber die Abh盲ngigkeit des Schmelzpunktes von der Oberfl盲chenergie eines festen K枚rpers, / Z. Phys. Chem., 1908, 55, p 545鈥?48
    6. M. Takagi, Electron-Diffraction Study of Liquid-Solid Transition of Thin Solid Films, / J. Phys. Soc. Jpn., 1954, 9(3), p 359鈥?63 CrossRef
    7. J.F. Pocza, A. Barna, and P.B. Barna, Formation Processes of Vacuum-Deposited Indium Films and Thermodynamical Properties of Submicroscopic Particles Observed by In Situ Electron Microscopy, / J. Vac. Sci. Technol., 1969, 6(4), p 472鈥?75 CrossRef
    8. C.J. Coombes, The Melting of Small Particles of Lead and Indium, / J. Phys. F, 1972, 2, p 441鈥?49 CrossRef
    9. Ph Buffat and J.-P. Borel, Size Effect on the Melting Temperature of Gold Particles, / Phys. Rev. A, 1976, 13, p 2287鈥?296 CrossRef
    10. P.R. Couchman and W.A. Jesser, Thermodynamic Theory of Size Dependence of Melting Temperature in Metals, / Nature, 1977, 269, p 481鈥?83 CrossRef
    11. F. Spaepen and D. Turnbull, Negative Pressures and Melting Point Depression in Oxide-Coated Liquid Metal Droplets, / Scripta Metall., 1979, 13, p 149鈥?51 CrossRef
    12. G.L. Allen, W.W. Gile, and W.A. Jesser, The Melting Temperature of Microcrystals Embedded in a Matrix, / Acta Metall., 1980, 28, p 1695鈥?701 CrossRef
    13. R. Kofman, P. Cheyssac, A. Aouaj, Y. Lereah, G. Deuscher, T. Ben-David, J.M. Penisson, and A. Bourret, Surface Melting Enhanced by Curvature Effects, / Surf. Sci., 1994, 303, p 231鈥?46 CrossRef
    14. K. Chattopadhyay and R. Goswami, Melting and Superheating of Metals and Alloys, / Prog. Mater. Sci., 1997, 42, p 287鈥?00 CrossRef
    15. M. Wautelet, On the Shape Dependence of the Melting Temperature of Small Particles, / Phys. Lett. A, 1998, 246, p 341鈥?42 CrossRef
    16. Z. Zhang, J.C. Li, and Q. Jiang, Modelling for Size-Dependent and Dimension-Dependent Melting of Nanocrystals, / J. Phys. D, 2000, 33, p 2653鈥?656 CrossRef
    17. Q. Jiang, Z. Zhang, and J.C. Li, Melting Thermodynamics of Nanocrystals Embedded in a Matrix, / Acta Mater., 2000, 48, p 4791鈥?795 CrossRef
    18. T. Tanaka and S. Hara, Thermodynamic Evaluation of Binary Phase Diagrams of Small Particle Systems, / Z. Metallkd., 2001, 92, p 467鈥?72
    19. M. Hillert and J. Argen, Effect of Surface Free Energy and Surface Stress on Phase Equilibria, / Acta Mater., 2002, 50, p 2429鈥?441 CrossRef
    20. U. Tartaglino and E. Tosatti, Strain Effects at Solid Surfaces Near the Melting Point, / Surf. Sci., 2003, 532鈥?35, p 623鈥?27 CrossRef
    21. Q. Jiang, L.H. Liang, and J.C. Li, Thermodynamic Superheating of Low-Dimensional Metals Embedded in Matrix, / Vacuum, 2003, 72, p 249鈥?55 CrossRef
    22. Z. Shi, P. Wynblatt, and S.G. Srinivasan, Melting Behavior of Nanosized Lead Particles Embedded in an Aluminium Matrix, / Acta Mater., 2004, 52, p 2305鈥?316 CrossRef
    23. V.M. Samsonov and O.A. Malkov, Thermodynamic Model of Crystallization and Melting of Small Particles, / Cent. Eur. J. Phys., 2004, 2(1), p 90鈥?03 CrossRef
    24. Q.S. Mei, S.C. Wang, H.T. Cong, Z.H. Jin, and K. Lu, Determination of Pressure Effect on the Melting Point Elevation of Al Nanoparticles Encapsulated in Al2O3 without epitaxial interface, / Phys. Rev. B, 2004, 70, p 125421 CrossRef
    25. J. Chang and E. Johnson, Surface and Bulk Melting of Small Metal Clusters, / Philos. Mag., 2005, 85(30), p 3617鈥?627 CrossRef
    26. J. Slutsker, K. Thornton, A.L. Roytburd, J.A. Warren, and G.B. McFadden, Phase Field Modeling of Solidification Under Stress, / Phys. Rev. B, 2006, 74(1), p 014103 CrossRef
    27. J.J. Hoyt, Effect of Stress on Melting and Freezing in Nanopores, / Phys. Rev. Lett., 2006, 96(4), p 045702 CrossRef
    28. G. Guisbiers and M. Wautelet, Size, Shape and Stress Effects on the Melting Temperature of Nano-polyhedral Grains on a Substrate, / Nanotechnology, 2006, 17, p 2008鈥?011 CrossRef
    29. J. Sun and S.L. Simon, The Melting Behavior of Aluminum Nanoparticles, / Thermochim. Acta, 2007, 463, p 32鈥?0 CrossRef
    30. G. Guisbiers, O. Van Overschelde, and M. Wautelet, Nanoparticulate Origin of Intrinsic Residual Stress in Thin Films, / Acta Mater., 2007, 55, p 3541鈥?546 CrossRef
    31. O.A. Yeshchenko, I.M. Dmitruk, A.A. Alexeenko, and A.M. Dmytruk, Size-Dependent Melting of Spherical Copper Nanoparticles Embedded in a Silica Matrix, / Phys. Rev. B, 2007, 75(8), p 085434 CrossRef
    32. P. Letellier, A. Mayaffre, and M. Turmine, Melting Point Depression of Nanosolids: Nonextensive Thermodynamics Approach, / Phys. Rev. B, 2007, 76, p 045428 CrossRef
    33. Q.S. Mei and K. Lu, Melting and Superheating of Crystalline Solids: From Bulk to Nanocrystals, / Prog. Mater. Sci., 2007, 52, p 1175鈥?262 CrossRef
    34. J. Lee, T. Tanaka, J. Lee, and H. Mori, Effect of Substrates on the Melting Temperature of Gold Nanoparticles, / Calphad, 2007, 31, p 105鈥?11 CrossRef
    35. K.K. Nanda, Size-Dependent Melting of Nanoparticles: Hundred Years of Thermodynamic Model, / Pramana J. Phys., 2009, 172, p 617鈥?28 CrossRef
    36. V.I. Levitas, M. Pantoya, G. Chauhan, and I.J. Rivero, Effect of the Alumina Shell on the Melting Temperature Depression for Aluminum Nanoparticles, / Phys. Chem. C, 2009, 113(32), p 14088鈥?4096 CrossRef
    37. G. Kaptay, The Extension of the Phase Rule to Nano-systems and on the Quaternary Point in One-Component Nano Phase Diagrams, / J. Nanosci. Nanotechnol., 2010, 10, p 8164鈥?170 CrossRef
    38. W. Luo, L. Deng, K. Su, K. Li, G. Liao, and S. Xiao, Gibbs Free Energy Approach to Calculate the Thermodynamic Properties of Copper Nanocrystals, / Phys. B, 2011, 406, p 859鈥?63 CrossRef
    39. V.I. Levitas and K. Samani, Size and Mechanics Effects in Surface-Induced Melting of Nanoparticles, / Nat. Commun., 2011, 2, p 284 CrossRef
    40. V.I. Levitas and K. Samani, Coherent Solid/Liquid Interface with Stress Relaxation in a Phase-Field Approach to the Melting/Solidification Transition, / Phys. Rev. B, 2011, 84(14), p 140103 CrossRef
    41. G. Garzel, J. Janczak-Rusch, and L. Zabdyr, Reassessment of the Ag-Cu Phase Diagram for Nanosystems Including Particle Size and Shape Effect, / Calphad, 2012, 36, p 52鈥?6 CrossRef
    42. G. Kaptay, The Gibbs Equation Versus the Kelvin and the Gibbs-Thomson Equations to Describe Nucleation and Equilibrium of Nano-materials, / J. Nanosci. Nanotechnol., 2012, 12(3), p 2625鈥?633 CrossRef
    43. A.I. Rusanov, The Development of the Fundamental Concepts of Surface Thermodynamics, / Colloid J., 2012, 74(2), p 136鈥?53 CrossRef
    44. G. Kaptay, Nano-Calphad: Extension of the Calphad Method to Systems with Nano-phases and Complexions, / J. Mater. Sci., 2012, 47, p 8320鈥?335 CrossRef
    45. V.I. Levitas, Z. Ren, Y. Zeng, Z. Zhang, and G. Han, Effect of the Alumina Shell on the Melting Temperature Depression for Aluminum Nanoparticles, / Phys. Rev. B, 2012, 85(22), p 220104 CrossRef
    46. J. Leitner and M. Kamr谩dek, Termodynamicky popis nanosystemu, / Chem. Listy, 2013, 107, p 606鈥?13
    47. J. Lee and K.J. Sim, General Equations of CALPHAD-Type Thermodynamic Description for Metallic Nanoparticle Systems, / Calphad, 2013, doi:10.1016/j.calphad.2013.07.008
    48. D.A. Firmansyah, K. Sullivan, K.S. Lee, Y.H. Kim, R. Zahaf, M.R. Zachariah, and D.J. Lee, Microstructural Behavior of the Alumina Shell and Aluminum Core Before and After Melting of Aluminum Nanoparticles, / Phys. Chem. C, 2013, 116(1), p 404鈥?11 CrossRef
    49. L. Wojtczak, The Melting Point of Thin Films, / Phys. Status Solidi, 1967, 22, p K163鈥揔166 CrossRef
    50. L.P.H. Jeurgens, Z. Wang, and E.J. Mittemeijer, Thermodynamics of Reactions and Phase Transformations at Interfaces and Surfaces, / Int. J. Mater. Res., 2009, 100, p 1281鈥?307 CrossRef
    51. D.G. Gromov and S.A. Gavrilov, Manifestation of the Heterogeneous Mechanism Upon Melting of Low-Dimensional Systems, / Phys. Solid State, 2009, 51(10), p 2135鈥?144 CrossRef
    52. R.C. Tolman, The Effect of Droplet Size on Surface Tension, / J. Chem. Phys., 1949, 17, p 333鈥?37 CrossRef
    53. M.W. Chase (Ed.), Janaf, Thermochemical Tables, 3rd ed., / J. Phys. Chem. Data, 1985, 14(Suppl 1)
    54. J. Emsley, / The Elements, Clarendon Press, Oxford, 1989
    55. Y.S. Touloukian, R.K. Kirby, R.E. Taylor, and T.Y.R. Lee, / Thermal Expansion, IFI/Plenum, New York, 1977 CrossRef
    56. T. Iida and R.I.L. Guthrie, / The Physical Properties of Liquid Metals, Clarendon Press, Oxford, 1993
    57. G. Kaptay, A Unified Model for the Cohesive Enthalpy, Critical Temperature, Surface Tension and Volume Thermal Expansion Coefficient of Liquid Metals of bcc, fcc and hcp Crystals, / Mater. Sci. Eng. A, 2008, 495, p 19鈥?6 CrossRef
    58. I. Barin, / Thermochemical Properties of Pure Substances, vols 1, 2, VCH, Weinheim, 1993
    59. H.M. Ledbetter and E.R. Naimon, Elastic Properties of Metals and Alloys. II. Copper, / J. Phys. Chem. Ref. Data, 1974, 3(4), p 897鈥?34 CrossRef
    60. D. Gerlich, S.L. Dole, and G.A. Slack, Elastic Properties of Aluminum Nitride, / J. Phys. Chem. Solids, 1986, 47(5), p 437鈥?41 CrossRef
    61. N. Eustathopoulos, M.G. Nicholas, and B. Drevet, / Wettability at High Temperatures, Pergamon, Amsterdam, 1999
    62. G. Kaptay, E. B谩der, and L. Boly谩n, Interfacial Forces and Energies Relevant to Production of Metal Matrix Composites, / Mater. Sci. Forum, 2000, 329鈥?30, p 151鈥?56 CrossRef
  • 作者单位:G. Kaptay (1) (2)
    J. Janczak-Rusch (3)
    G. Pigozzi (3)
    L. P. H. Jeurgens (3)

    1. Bay Zoltan Nonprofit Ltd, 2 Igloi, Miskolc, 3519, Hungary
    2. University of Miskolc, Egyetemvaros, Miskolc, 3515, Hungary
    3. Empa, Swiss Federal Laboratories for Materials Science and Technology, D眉bendorf, Switzerland
  • ISSN:1544-1024
文摘
A general equation is derived for melting point depression (MPD) of pure metals, consisting of three terms: MPD due to high gas pressure, MPD due to high strain energy, and MPD due to small size of the metal. Particular equations are derived for different configurations of the solid metal, including grains embedded within a matrix. The equations obtained in this paper can be used to design nano-joining structures with improved MPD.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700