Some background of monitoring and NDT also useful for timber structures
详细信息    查看全文
  • 作者:Jochen H. Kurz (1)
    Christian Boller (1) (2)

    1. Fraunhofer Institute for Nondestructive Testing (IZFP)
    ; Campus E3 1 ; 66123 ; Saarbr眉cken ; Germany
    2. Chair of NDT and Quality Assurance
    ; Saarland University ; Campus E 3.1 ; 66123 ; Saarbr眉cken ; Germany
  • 关键词:Monitoring ; Non ; destructive testing ; Civil engineering ; Timber ; Concrete ; Steel ; Condition assessment
  • 刊名:Journal of Civil Structural Health Monitoring
  • 出版年:2015
  • 出版时间:April 2015
  • 年:2015
  • 卷:5
  • 期:2
  • 页码:99-106
  • 全文大小:265 KB
  • 参考文献:1. Omenzetter P, Morris H, Worth M, Kohli V, Uma SR (2011) Long-term monitoring and field testing of an innovative multistory timber building. Nondestructive characterization for composite materials, aerospace engineering, civil infrastructure, and homeland security 2011, SPIE Proceedings 7983. doi:10.1117/12.879869
    2. Annamdas, VGM, Radhika, MA (2013) Electromechanical impedance of piezoelectric transducers for monitoring metallic and non-metallic structures: a review of wired, wireless and energy-harvesting methods. J Intell Mater Syst Struct 24: pp. 1021-1042 CrossRef
    3. Piazza M, Riggio M (eds) (2013) Proceedings of the 2nd international conference on structural health assessment of timber structures, SHATIS鈥?3. Z眉rich, Trans Tech Publications
    4. Quenneville P (Ed) (2012) Timber engineering challenges and solutions鈥擯roceedings of world conference on timber engineering 2012 (WCTE 2012). Auckland, New Zealand, Curran Associates, Inc
    Boller, C, Chang, FK, Fujino, Y eds. (2009) Encyclopedia of structural health monitoring. Wiley, Chichester/UK
    5. JSSC (2006) Department of defense joint service specification gUIDE: aircraft structures
    6. Kussmaul, K (1984) German basis safety concept rules out possibility of catastrophic failure. Nuclear Eng Int 12: pp. 41-46
    7. Harrison G, Tranter P, Grabowski L (1993) Defects and their effects on the integrity in nickel based aeroengine discs. AGARD Rep No 790: 9.1鈥?.16
    8. Grandt, AF (2003) Fundamentals of structural integrity: damage tolerant design and nondestructive evaluation. Wiley, USA
    9. Eurocodes CEN technical committee 250 (CEN/TC250), http://eurocodes.jrc.ec.europa.eu, last visited August 2014
    10. Krieger, J, Kaschner, R, Haardt, P (2004) Die objektbezogene Untersuchung und Bewertung von Br眉cken im Rahmen des Bauwerks-management-systems. Bautechnik 77: pp. 453-463 CrossRef
    11. Chang FK (ed) (1997鈥?013) Proceedings of the international workshop on structural health monitoring. DEStech Publ
    12. Boller C, Staszewski WJ (eds) (2004) Proceedings of the European workshop on structural health monitoring. DEStec Publ
    13. Boller C (ed) (2012) Proceedings of the European workshop on structural health monitoring. German society for NDT (DGZfP)
    14. Casciati F, Giordano M (2010) Proceedings of the European workshop on structural health monitoring. DEStec Publ
    15. Staszewski WJ, Boller C, Tomlinson GR (eds) (2004) Health monitoring of aerospace structures. Wiley
    16. Balageas D, Fritzen CP, G眉emes A (eds) (2006) Structural health monitoring. ISTE Ltd
    17. Adams DE (2007) Health monitoring of structural materials and components. Wiley
    18. Giurgiutiu V (2008) Structural health monitoring with piezoelectric wafer active sensors. Elsevier
    19. Ostachowicz W, Kudela P, Krawczuk M, Zak A (2012) Guided waves in structures for SHM. Wiley
    20. Stepinski T, Uhl T, Staszewski WJ (2013) Advanced structural damage detection. Wiley
    21. Miesseler HJ, Wolff R (1991) Bauwerksbeobachtung mit Lichtwellenleitern. Proceedings of Zerst枚rungsfreie Pr眉fung im Bauwesen. Int. ZfPBau-symposium. DGZfP, Berlin, pp 142鈥?49
    22. Habel WR (2008) Assessment of structures using fibre-optic sensors. proceedings of conference bauwerksdiagnose. DGZfP, Berlin
    23. Hamann M, Kubowitz P, Hofmann D (2013) Scale of intelligence in hybrid bridge structures鈥搉ew aspects of monitoring by using fibre-optic sensors in timber elements. Proceedings of 6th international conference on structural health monitoring of intelligent infrastructure. Hong Kong
    24. Gli拧i膰 B, Inaudi D (2007) Fibre optic methods for structural health monitoring. Wiley
    25. De Roeck G, Peeters B, Maeck J (2000) Dynamic monitoring of civil engineering structures proceedings of IASS-IACM. Athens/Greece
    26. Wenzel, H, Pickler, D (2005) Ambient vibration monitoring. Wiley, Chichester/UK CrossRef
    27. Bourquin F, Le Cam V, Cottineau LM (2004) A wireless sensor network for damage detection and health monitoring of cables. Proceedings of the 3rd European conf. on structural control. Vienna/Austria
    28. Fritzen CP, Kraemer P, Klinkov M (2008) Structural health monitoring of offshore wind energy plants. Proceedings of the 4th European workshop on structural health monitoring. DEStec Publ, pp 3鈥?0
    29. Frankenstein B, Schubert L, Meyendorf N, Friedmann H, Ebert C (2009) Monitoring system of wind turbine rotor blades. Proceedings of SPIE, 7293
    30. Holnicki-Szulc, J, Kolakowski, P, Nasher, N (2005) Leakage detection in water networks. J Intell Mater Syst Struct 16: pp. 207-219 CrossRef
    31. Caetano E, Cunha A (2009) Modal testing of the Vasco da Gama Bridge, Portugal. Encyclopedia of structural health monitoring. Wiley, Chichester, UK, pp 2183鈥?198
    32. http://www.sfb477.tu-bs.de/index_eng.html (last visited 02/14)
    33. www.samco.org (last visited 02/14)
    34. Wenzel H (Coordinator) (2013) IRIS鈥揑ndustrial safety and life cycle engineering, VCE ZT GmbH. see also http://www.vce.at/iris/ (last visited 02/14)
    35. www.ishmii.org (last visited 02/14)
    36. Ansell, MP Fatigue of wood and wood panel products. In: Harris, B eds. (2003) Fatigue in composites. CRC Press, Woodhead Publ Ltd, Cambridge/UK, pp. 339-361 CrossRef
    37. Tsai KT (1987) An investigation into fatigue behaviour of wood laminates for wind energy converter blade design. PhD thesis, University of Bath/UK
    38. Ross RJ, Pellerin RF (1994) Nondestructive testing for assessing wood members in structures: A review. Gen. Tech. Rep. FPL-GTR-70 (Rev.). Madison, WI: U.S. Department of Agriculture, Forest Service, Forest Products Laboratory, p 40
    39. Bucur, V (2003) Nondestructive characterization and imaging of wood. springer series in wood science. Springer, Berlin CrossRef
    40. Elsener R, Dackermann U, Li J (2013) Experimental characterization of the modulus of elasticity of timber utility poles using static and dynamic material testing approaches. ibid
    41. Jozi B, Dackermann U, Braun R, Li J, Samali B (2014) Separation of bi-directional stress waves for the non-destructive condition assessment of in-service timber utility poles. ibid
    42. Wyckhuise, A, Maldague, X (2001) A study of wood inspection by infrared thermography, part I: wood pole inspection by infrared thermography, part II: thermography for wood defects detection. Res Nondestruct Eval 13: pp. 1-21 CrossRef
    43. Lopez G, Basterraa LA, Ram贸n-Cuetoa G, de Diegoa A (2014) Detection of singularities and subsurface defects in wood by infrared thermography. Int J Archit Herit Conserv Anal Restor 8 (4): 517鈥?36
    44. Dackermann, U, Crews, K, Kasal, B, Li, J, Riggio, M, Rinn, F, Tannert, T (2014) In situ assessment of structural timber using stress鈥搘ave measurements. Mater Struct Materiaux et Constr 47: pp. 787-803 CrossRef
    45. Riggio, M, Anthony, RW, Augelli, F, Kasal, B, Lechner, T, Muller, W, Tannert, T (2014) In situ assessment of structural timber using non-destructive techniques. Mater Struct Materiaux et Constr 47: pp. 749-766 CrossRef
    46. Tannert, T, Anthony, RW, Kasal, B, Kloiber, M, Piazza, M, Riggio, M, Rinn, F, Widmann, R, Yamaguchi, N (2014) In situ assessment of structural timber using semi-destructive techniques. Mater Struct Materiaux et Constr 47: pp. 767-785 CrossRef
    47. Potts, AE (1988) Non-destructive testing of steel wire ropes. Symposium of the British Institute of Non-destructive Testing, London
    48. Weischedel, HR, Hohle, HW (1995) Quantitative non-destructive in-service evaluation of stay cables of cable-stayed bridges: methods and practical experience. SPIE 2456: pp. 226-236
    49. Barton JR, Teller CM, Suhler SA (1989) Design, develop, and fabricate a prototype nondestructive inspection and monitoring system for structural cables and strands of suspension bridges. Report FHWA-RD-89-158, Federal Highway Administration, Washington, D.C
    50. Hanasaki, K, Tsukada, K, Moriya, T (2000) A magnetic method for evaluation of the deterioration of large diameter wire ropes. WCNDT Symposium, Roma
    51. Bergamini, A, Christen, R, Motavalli, M (2003) A simple approach to the automatic recognition of flaws in large diameter steel cables. NDT-CE, Berlin
    52. Paulson, PO (1998) Continuous acoustic monitoring of suspension bridges and cable stays. Proc SPIE 3400: pp. 205-213 CrossRef
    53. Sluszka P, Gagnon C, Rankin S (2006) Inspection, evaluation and monitoring of suspension bridge cables. ASCE Conf. proceedings, structural engineering and public safety
    54. Pavlakovic, B, Lowe, M, Cawley, P (2003) The inspection of tendons in post-tensioned concrete using guided waves. Insight 41: pp. 446-452
    55. Suzuki, N, Takamatsu, H, Kawashima, S, Sugii, KI, Iwasaki, M (1988) Ultrasonic detection method for wire breakage. Kobelco Technol Rev 4: pp. 23-26
    56. Ghorbanpoor A (1999) Evaluation of prestressed concrete girders using magnetic flux leakage proceedings of the ASCE structures congress, structural engineering in the 21st century. New Orleans, pp 284鈥?87
    57. Hillemeier B, Walter A (2007) Fast non-destructive localisation of prestressing steel fractures in post-tensioned concrete bridges. Advances in construction materials. Springer, pp 563鈥?74
    58. Bligh RP, Nakirekanti S, Bray DE, James RW (1994) Evaluation of NDE techniques for detecting grout defects in cable stays. Mater Eval 508鈥?14
    59. Ciolko AT, Tabatabai H (1999) Nondestructive methods for condition evaluation of prestressing steel strands in concrete bridges. Final Report, NCHRP Project, pp 10鈥?3
    60. Elsener, B (2006) Long-term monitoring of electrically isolated post-tensioning tendons. Struct Concr 6: pp. 101-106 CrossRef
    61. Laguerre L, Bouhelier M, Grimault A (2004) Application of ultrasonic guided waves to the evaluation of steel members integrity. In: 2nd European conference on structural health monitoring (SHM). Munich, Germany
    62. Laguerre, L, Aime, JC, Brissaud, M (2002) Magnetostrictive pulse-echo device for non destructive evaluation of cylindrical steel materials using longitudinal guided waves. Ultrasonics 39: pp. 503-514 CrossRef
    63. Sprenger, H, Gaul, L Ultrasonic structural health monitoring of cable structures. In: Chang, Fu-Kuo eds. (2011) Structural health monitoring, condition-based maintenance and intelligent structures. DEStech Publications Inc, Lancasterpp. 12
    64. Hayashi, T, Tamayama, C, Murase, M (2003) Guided wave dispersion curves for a bar with an arbitrary cross-section, a rod and rail example. Ultrasonics 41: pp. 175-183 CrossRef
    65. Wilcox, P, Lowe, MJS, Cawley, P (2005) Omnidirectional guided wave inspection of large metallic plate structures using an EMAT array. IEEE UFFC 52: pp. 652-665 CrossRef
    66. Jiles, D (1991) Introduction to magnetism and magnetic materials. Chapman and Hall, London, New York, Tokyo, Melbourne, Madras CrossRef
    67. Kurz, JH, Laguerre, L, Niese, F, Gaillet, L, Szielasko, K, Tschuncky, R, Treyss猫de, F (2013) NDT for need based maintenance of bridge cables, ropes and pre-stressed elements. J Civil Struct Health Monit 3: pp. 285-295 CrossRef
    68. Huang M, Jiang L, Liaw P, Brooks C, Seeley R, Klarstrom D (1998) Using acoustic emission in fatigue and fracture. Mater Res 50(11)
    69. Kim, YP, Fregonese, M, Mazille, H, F茅ron, D, Santarini, G (2003) Ability of acoustic emission technique for detection and monitoring of crevice corrosion on 304L austenitic stainless steel. NDT E Int 36: pp. 553-562 CrossRef
    70. Shield, CK (1997) Comparison of acoustic emission activity in reinforced and prestressed concrete beams under bending. Constr Build Mater 1: pp. 189-194 CrossRef
    71. Yuyama, S, Yokoyama, K, Niitani, K, Ohtsu, M, Uomoto, T (2007) Detection and evaluation of failures in high-strength tendon of prestressed concrete bridges by acoustic emission. Constr Build Mater 21: pp. 491-500 CrossRef
    72. Taylor, JL, Casey, NF (1984) The Acoustic Emission of Steel Wire Ropes. Wire Industry 51: pp. 79-82
    73. Sison M, Duke JC, Horne M (1996) Acoustic emission monitoring of steel bridges members. Final report, Virginia Transportation Research Council, VA 24061- 0219
    74. Casey, NF, Taylor, JL (1985) The evaluation of wire rope by acoustic emission technique. Br J NDT 27: pp. 351-356
    Maierhofer, C, Reinhardt, H-W, Dobmann, G eds. (2010) Non-destructive evaluation of reinforced concrete structures. Woodhead Publishing, Cambridge
    75. Abraham O, D茅robert X (eds) (2009) Proceedings of the 7th international symposium on non-destructive testing in civil engineering, Conf茅d茅ration Francaise pour les Essais Non Destructifs (COFREND), p 1028
    76. Dobmann G (ed), H眉bschen G, Pfau, R (2008) Handbook on the ultrasonic examination of austenitic and dissimilar welds. In: IIW Handbook, 1edn. Deutsche Gesellschaft f眉r zerst枚rungsfreie Pr眉fung (DGZfP), Berlin
    77. Ehrhart, B, Bockenheimer, C, Valeske, B Non-destructive evaluation (NDE) of aerospace composites: methods for testing adhesively bonded composites. In: Karbhari, VM eds. (2013) Non-destructive evaluation (NDE) of polymer matrix composites, techniques and applications. Woodhead Publishing, Cambridge, pp. 220-237 CrossRef
    78. Ehrhart B, Valeske B, Saramb茅 M, Chobaut N, Gendard A, Bockenheimer C (2011) Preliminary tests for the development of new NDT techniques for the quality of adhesive bond assessment. In: Deutsche Gesellschaft f眉r Zerst枚rungsfreie Pr眉fung e.V. (DGZfP): DGZfP-Jahrestagung 2011. ZfP in Forschung, Entwicklung und Anwendung, Zerst枚rungsfreie Materialpr眉fung. Berlin, DGZfP-Berichtsb盲nde 127-CD, p 8
    79. Sanabria, SJ, Hilbers, U, Neuenschwander, J, Niemz, P, Sennhauser, U, Th枚men, H, Wenker, JL (2013) Modeling and prediction of density distribution and microstructure in particleboards from acoustic properties by correlation of non-contact high-resolution pulsed air-coupled ultrasound and X-ray images. Ultrasonics 53: pp. 157-170 CrossRef
  • 刊物主题:Civil Engineering; Measurement Science and Instrumentation; Vibration, Dynamical Systems, Control;
  • 出版者:Springer Berlin Heidelberg
  • ISSN:2190-5479
文摘
Extension of the life of existing and historic timber structures has increased steadily in the last decade. Sustainability and low carbon emission have influenced activities in the construction industry. In the frame of the European COST Action FP 1101, several activities related to timber structures have been clustered. The COST Action FP 1101 consists of three working groups, namely Assessment (Working Group 1), Reinforcement (Working Group 2) and Monitoring (Working Group 3) of Timber Structures. This special issue of the Journal of Civil Structural Health Monitoring gives an overview of timber structure monitoring activities mainly from a European perspective. This paper is an introduction to this special issue and gives an overview of monitoring concepts and applications related to non-destructive testing (NDT). The prime intention is to give contextual crosslinks to other fields in which NDT methods and monitoring principles have already been developed so that synergies can be realized for timber structures. Outside urgent structural safety issues, monitoring of timber structures has the potential to become a state of the art technology for which material models and NDT-based sensors allow a design criterion for an optimized and highly efficient use of said structures. The sensor concepts may further be enhanced, however, with possible lower cost alternatives in terms of sensors and electronics.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700