Elliptic determinantal process of type A
详细信息    查看全文
  • 作者:Makoto Katori
  • 关键词:Noncolliding diffusion process ; Dyson’s Brownian motion model ; Elliptic determinant evaluations ; Determinantal process ; Determinantal martingale ; Alcove of affine Weyl group ; 60J65 ; 60G44 ; 82C22 ; 60B20 ; 33E05
  • 刊名:Probability Theory and Related Fields
  • 出版年:2015
  • 出版时间:August 2015
  • 年:2015
  • 卷:162
  • 期:3-4
  • 页码:637-677
  • 全文大小:738 KB
  • 参考文献:1.Andrews, G.E., Askey, R., Roy, R.: Special Functions. Cambridge University Press, Cambridge (1999)MATH View Article
    2.Bauer, R.O., Friedrich, R.M.: On chordal and bilateral SLE in multiply connected domain. Math. Z. 258, 241-65 (2008)MATH MathSciNet View Article
    3.Ben Hough, J., Krishnapur, M., Peres, Y., Virág, B.: Zeros of Gaussian Analytic Functions and Determinantal Point Processes. Amer. Math. Soc., Province R. I. (2009)MATH
    4.Betea, D.: Elliptically distributed lozenge tilings of a hexagon. arXiv:?math-ph/-110.-176
    5.Biane, P., Bougerol, P., O’Connell, N.: Littelmann paths and Brownian paths. Duke Math. J. 130, 127-67 (2005)MATH MathSciNet View Article
    6.Borodin, A., Gorin, V., Rains, E.M.: \(q\) -Distributions on boxed plane partitions. Sel. Math. (N. S.) 16, 731-89 (2010)MATH MathSciNet View Article
    7.Borodin, A., Rains, E.M.: Eynard-Mehta theorem, Schur process and their Pfaffian analogs. J. Stat. Phys. 121, 291-17 (2005)MATH MathSciNet View Article
    8.Bru, M.F.: Wishart process. J. Theor. Probab. 3, 725-51 (1991)MathSciNet View Article
    9.Cardy, J.: Stochastic Loewner evolution and Dyson’s circular ensemble. J. Phys. A Math. Gen. 36, L379–L386 (2003)MATH MathSciNet View Article
    10.Dyson, F.J.: A Brownian-motion model for the eigenvalues of a random matrix. J. Math. Phys. 3, 1191-198 (1962)MATH MathSciNet View Article
    11.Dyson, F.J.: Missed opportunities. Bull. Am. Math. Soc. 78, 635-52 (1972)MATH MathSciNet View Article
    12.Eynard, B., Mehta, M.L.: Matrices coupled in a chain: I. Eigenvalue correlations. J. Phys. A 31, 4449-456 (1998)MATH MathSciNet View Article
    13.Forrester, P.J.: Exact solution of the lock step model of vicious walkers. J. Phys. A Math. Gen. 23, 1259-273 (1990)MATH MathSciNet View Article
    14.Forrester, P.J.: Theta function generalizations of some constant term identities in the theory of random matrices. SIAM J. Math. Anal. 21, 270-80 (1990)MATH MathSciNet View Article
    15.Forrester, P.J.: Log-gases and Random Matrices. London Mathematical Society Monographs. Princeton University Press, Princeton (2010)
    16.Fulmek, M.: Nonintersecting lattice paths on the cylinder. Sémin. Lothar. Combin. 52, article B52b, pp. 1-6 (2004)
    17.Gosper, R.W.: Experiments and discoveries in \(q\) -trigonometry. In: Garvan, F.G., Ismail, M.E.H. (eds.) Symbolic Computation, Number Theory, Special Functions, Physics and Combinatorics, pp. 79-05. Kluwer, Dordrecht (2001)View Article
    18.Grabiner, D.J.: Brownian motion in a Weyl chamber. Non-colliding particles, and random matrices. Ann. Inst. Henri Poincaré, Probab. Stat. 35, 177-04 (1999)MATH MathSciNet View Article
    19.Grabiner, D.J.: Random walk in an alcove of an affine Weyl group, and non-colliding random walks on an interval. J. Combin. Theory Ser. A 97, 285-06 (2002)MATH MathSciNet View Article
    20.Hobson, D.G., Werner, W.: Non-colliding Brownian motions on the circle. Bull. Lond. Math. Soc. 28, 643-50 (1996)MathSciNet View Article
    21.Johansson, K.: Non-intersecting paths, random tilings and random matrices. Probab. Theory Relat. Fields 123, 225-80 (2002)MATH View Article
    22.Karlin, S., McGregor, J.: Coincidence probabilities. Pac. J. Math. 9, 1141-164 (1959)MATH MathSciNet View Article
    23.Katori, M.: Determinantal martingales and noncolliding diffusion processes. Stoch. Process. Appl. 124, 3724-768 (2014)MATH MathSciNet View Article
    24.Katori, M.: Determinantal martingales and correlations of noncolliding random walks. arXiv:?math.?PR/-307.-856
    25.Katori, M., Tanemura, H.: Symmetry of matrix-valued stochastic processes and noncolliding diffusion particle systems. J. Math. Phys. 45, 3058-085 (2004)MATH MathSciNet View Article
    26.Katori, M., Tanemura, H.: Non-equilibrium dynamics of Dyson’s model with an infinite number of particles. Commun. Math. Phys. 293, 469-97 (2010)MATH MathSciNet View Article
    27.Katori, M., Tanemura, H.: Noncolliding processes, matrix-valued processes and determinantal processes. Sugaku Expos. (AMS) 24, 263-89 (2011)
    28.Katori, M., Tanemura, H.: Complex Brownian motion representation of the Dyson model. Electron. Commun. Probab. 18(4), 1-6 (2013)MathSciNet
    29.K?nig, W., O’Connell, N.: Eigenvalues of the Laguerre process as non-colliding squared Bessel process. Electron. Commun. Probab. 6, 107-14 (2001)View Article
    30.Krattenthaler, C.: Advanced determinant calculus: a complement. Linear Algebra Appl. 411, 68-66 (2005)MATH MathSciNet View Article
    31.Krattenthaler, C.: Asymptotics for random walks in alcoves of affine Weyl groups. Sémin. Lothar. Combin. 52, article B52i, pp. 1-2 (2007)
    32.Liechty, K., Wang. D.: Nonintersecting Brownian motions on the unit circle. arXiv:?math.?PR/-312.-390
    33.Macdonald, I.G.: Affine root systems and Dedekind’s \(\eta \) -function. Invent. Math. 15, 91-43 (1972)MATH MathSciNet View Article
    34.Mehta, M.L.: Random Matrices, 3rd edn. Elsevier, Amste
  • 作者单位:Makoto Katori (1)

    1. Department of Physics, Faculty of Science and Engineering, Chuo University, Bunkyo-ku, Tokyo, Kasuga, 112-8551, Japan
  • 刊物类别:Mathematics and Statistics
  • 刊物主题:Mathematics
    Probability Theory and Stochastic Processes
    Mathematical and Computational Physics
    Quantitative Finance
    Mathematical Biology
    Statistics for Business, Economics, Mathematical Finance and Insurance
    Operation Research and Decision Theory
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1432-2064
文摘
We introduce an elliptic extension of Dyson’s Brownian motion model, which is a temporally inhomogeneous diffusion process of noncolliding particles defined on a circle. Using elliptic determinant evaluations related to the reduced affine root system of type \(A\), we give determinantal martingale representation (DMR) for the process, when it is started at the configuration with equidistant spacing on the circle. DMR proves that the process is determinantal and the spatio-temporal correlation kernel is determined. By taking temporally homogeneous limits of the present elliptic determinantal process, trigonometric and hyperbolic versions of noncolliding diffusion processes are studied.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700