Computational investigation of the effect of thermal perturbation on the mechanical unfolding of titin I27
详细信息    查看全文
  • 作者:Navneet Bung (1)
    U. Deva Priyakumar (1) deva@iiit.ac.in
  • 关键词:Protein folding – ; Steered molecular dynamics – ; Denaturation – ; Mechanical stability – ; Titin I27 – ; Folding pathways
  • 刊名:Journal of Molecular Modeling
  • 出版年:2012
  • 出版时间:June 2012
  • 年:2012
  • 卷:18
  • 期:6
  • 页码:2823-2829
  • 全文大小:452.0 KB
  • 参考文献:1. Forman JR, Clarke J (2007) Mechanical unfolding of proteins: insights into biology, structure and folding. Curr Opin Struct Biol 17:58–66
    2. Kumar S, Li MS (2010) Biomolecules under mechanical force. Phys Rep 486:1–74
    3. Best RB, Clarke J (2002) What can atomic force microscopy tell us about protein folding? Chem Commun 183–193
    4. Bustamante C, Chemla YR, Forde NR, Izhaky D (2004) Mechanical processes in biochemistry. Annu Rev Biochem 73:705–748
    5. Greenleaf WJ, Frieda KL, Foster DAN, Woodside MT, Block SM (2008) Direct observation of hierarchical folding in single riboswitch aptamers. Science 319:630–633
    6. Li PTX, Vieregg J, Tinoco I Jr (2008) How RNA unfolds and refolds. Annu Rev Biochem 77:77–100
    7. Hyeon C, Morrison G, Thirumalai D (2008) Force-dependent hopping rates of RNA hairpins can be estimated from accurate measurement of the folding landscapes. Proc Natl Acad Sci USA 105:9604–9609
    8. Colizzi F, Perozzo R, Scapozza L, Recanatini M, Cavalli A (2010) Single-molecule pulling simulations can discern active from inactive enzyme inhibitors. J Am Chem Soc 132:7361–7371
    9. Dobson CM, Šali A, Karplus M (1998) Protein folding: a perspective from theory and experiment. Angew Chem Int Ed 37:868–893
    10. Carrion-Vazquez M, Oberhauser AF, Fowler SB, Marszalek PE, Broedel SE, Clarke J, Fernandez JM (1999) Mechanical and chemical unfolding of a single protein: a comparison. Proc Natl Acad Sci USA 96:3694–3699
    11. Botello E, Harris NC, Sargent J, Chen WH, Lin KJ, Kiang CH (2009) Temperature and chemical denaturant dependence of forced unfolding of titin i27. J Phys Chem B 113:10845–10848
    12. Cao Y, Li H (2008) How do chemical denaturants affect the mechanical folding and unfolding of proteins? J Mol Biol 375:316–324
    13. Taniguchi Y, Brockwell DJ, Kawakami M (2008) The effect of temperature on mechanical resistance of the native and intermediate states of I27. Biophys J 95:5296–5305
    14. Schlierf M, Rief M (2005) Temperature softening of a protein in single-molecule experiments. J Mol Biol 354:497–503
    15. Hyeon C, Thirumalai D (2003) Can energy landscape roughness of proteins and RNA be measured by using mechanical unfolding experiments? Proc Natl Acad Sci USA 100:10249–10253
    16. Klimov D, Thirumalai D (1999) Stretching single-domain proteins: phase diagram and kinetics of force-induced unfolding. Proc Natl Acad Sci USA 96:6166–6170
    17. Isralewitz B, Gao M, Schulten K (2001) Steered molecular dynamics and mechanical functions of proteins. Curr Opin Struct Biol 11:224–230
    18. Improta S, Politou AS, Pastore A (1996) Immunoglobulin-like modules from titin I-band: extensible components of muscle elasticity. Structure 4:323–337
    19. Humphrey W, Dalke A, Schulten K (1996) VMD: Visual Molecular Dynamics. J Mol Graph 14:33–38
    20. Labeit S, Kolmerer B, Linke WA (1997) The giant protein titin: emerging roles in physiology and pathophysiology. Circul Res 80:290–294
    21. Rief M, Gautel M, Oesterhelt F, Fernandez JM, Gaub HE (1997) Reversible unfolding of individual titin immunoglobulin domains by AFM. Science 276:1109–1112
    22. Kellermayer MSZ, Smith SB, Granzier HL, Bustamante C (1997) Folding–unfolding transitions in single titin molecules characterized with laser tweezers. Science 276:1112–1116
    23. Tskhovrebova L, Trinick J, Sleep J, Simmons R (1997) Elasticity and unfolding of single molecules of the giant muscle protein titin. Nature 387:308–312
    24. Lu H, Schulten K (2000) The key event in force-induced unfolding of titin’s immunoglobulin domains. Biophys J 79:51–65
    25. Lu H, Schulten K (1999) Steered molecular dynamics simulation of conformational changes of immunoglobulin domain I27 interpret atomic force microscopy observations. Chem Phys 247:141–153
    26. Lu H, Isralewitz B, Krammer A, Vogel V, Schulten K (1998) Unfolding of titin immunoglobulin domains by steered molecular dynamics simulation. Biophys J 75:662–671
    27. Fowler SB, Best RB, Toca Herrera JL, Rutherford TJ, Steward A, Paci E, Karplus M, Clarke J (2002) Mechanical unfolding of a titin Ig domain: structure of unfolding intermediate revealed by combining AFM, molecular dynamics simulations, NMR and protein engineering. J Mol Biol 322:841–849
    28. Cieplak M, Hoang TX, Robbins MO (2002) Folding and stretching in a Go like model of titin. Proteins Struct Funct Bioinf 49:114–124
    29. Ho BK, Agard DA (2010) An improved strategy for generating forces in steered molecular dynamics: the mechanical unfolding of titin, e2lip3 and ubiquitin. PloS one 5:e13068
    30. Li PC, Makarov DE (2003) Theoretical studies of the mechanical unfolding of the muscle protein titin: bridging the time-scale gap between simulation and experiment. J Chem Phys 119:9260–9268
    31. Li MS, Gabovich A, Voitenko A (2008) New method for deciphering free energy landscape of three-state proteins. J Chem Phys 129:105102
    32. Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, Chipot C, Skeel RD, Kale L, Schulten K (2005) Scalable molecular dynamics with NAMD. J Comput Chem 26:1781–1802
    33. Mackerell AD, Feig M, Brooks CL (2004) Extending the treatment of backbone energetics in protein force fields: limitations of gas-phase quantum mechanics in reproducing protein conformational distributions in molecular dynamics simulations. J Comput Chem 25:1400–1415
    34. MacKerell AD, Bashford D, Bellott DRL, Evanseck JD, Field MJ, Fischer S, Gao J, Guo H, Ha S, Joseph-McCarthy D, Kuchnir L, Kuczera K, Lau FTK, Mattos C, Michnick S, Ngo T, Nguyen DT, Prodhom B, Reiher WE, Roux B, Schlenkrich M, Smith JC, Stote R, Straub J, Watanabe M, Wiorkiewicz-Kuczera J, Yin D, Karplus M (1998) All-atom empirical potential for molecular modeling and dynamics studies of proteins. J Phys Chem B 102:3586–3616
    35. Izrailev S, Stepaniants S, Isralewitz B, Kosztin D, Lu H, Molnar F, Wriggers W, Schulten K (1999) Steered molecular dynamics. In: Deuflhard P, Hermans J, Leimkuhler B, Mark A, Skeel RD, Reich S (eds) Computational molecular dynamics: challenges, methods, ideas. Springer, Berlin, 4:39–65
    36. Balsera M, Stepaniants S, Izrailev S, Oono Y, Schulten K (1997) Reconstructing potential energy functions from simulated force-induced unbinding processes. Biophys J 73:1281–1287
    37. Rueda M, Ferrer-Costa C, Meyer T, P猫rez A, Camps J (2007) A consensus view of protein dynamics. Proc Natl Acad Sci USA 104:796–801
    38. Mackerell A (2004) Empirical force fields for biological macromolecules: overview and issues. J Comput Chem 25:1584–1604
    39. Faver JC, Benson ML, He X, Roberts BP, Wang B, Marshall MS, Sherrill CD, Merz Jr KM (2011) The energy computation paradox and ab initio protein folding. PloS one 6:e18868
    40. Law R, Liao G, Harper S, Yang G, Speicher DW, Discher DE (2003) Pathway shifts and thermal softening in temperature-coupled forced unfolding of spectrin domains. Biophys J 85:3286–3293
  • 作者单位:1. Center for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology, Hyderabad, 500 032 India
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Computer Applications in Chemistry
    Biomedicine
    Molecular Medicine
    Health Informatics and Administration
    Life Sciences
    Computer Application in Life Sciences
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:0948-5023
文摘
The emergence of single-molecule force measurement experiments has facilitated a better understanding of protein folding pathways and the thermodynamics involved. Computational methods such as steered molecular dynamics (SMD) simulations are helpful in providing atomistic level information on the unfolding pathways. Recent experimental studies have showed that combinations of single-molecule experiments with traditional methods such as chemical and/or thermal denaturation yield additional insights into the folding phenomenon. In this study, we report results from extensive computations (a total of about 60 SMD simulations with a total length of about 0.4 μs) that address the effect of thermal perturbation on the mechanical stability of the I27 domain of the protein titin. A wide range of temperatures (280–340 K) were considered for the pulling, which was done at both constant velocity and constant force using SMD simulations. Good agreement with experimental data, such as for the trends in changes in average force and the maximum force with respect to the temperature, was obtained. This study identifies two competing pathways for the mechanical unfolding of I27, and illustrates the significance of combining various techniques to examine protein folding.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700