Enzymatic glucose biosensor based on bismuth nanoribbons electrochemically deposited on?reduced graphene oxide
详细信息    查看全文
  • 作者:Rajkumar Devasenathipathy ; Raj Karthik ; Shen-Ming Chen…
  • 关键词:Potentiostatic?method ; Bismuth nanoribbons ; Glucose oxidase ; Biosensor ; Reduced graphene oxide
  • 刊名:Microchimica Acta
  • 出版年:2015
  • 出版时间:October 2015
  • 年:2015
  • 卷:182
  • 期:13-14
  • 页码:2165-2172
  • 全文大小:1,353 KB
  • 参考文献:1.Malakhova N, Mysik A, Saraeva SY, Stozhko NY, Uimin M, Ermakov A, Brainina KZ (2010) A voltammetric sensor on the basis of bismuth nanoparticles prepared by the method of gas condensation. J Anal Chem 65(6):640-47CrossRef
    2.Mayorga-Martinez CC, Cadevall M, Guix M, Ros J, Merko?i A (2013) Bismuth nanoparticles for phenolic compounds biosensing application. Biosens Bioelectron 40(1):57-2CrossRef
    3.Crosnier O, Brousse T, Devaux X, Fragnaud P, Schleich DM (2001) New anode systems for lithium ion cells. J Power Sources 94(2):169-74. doi:10.-016/?S0378-7753(00)00599-1 CrossRef
    4.Li B, Gu M, Nie Z, Shao Y, Luo Q, Wei X, Li X, Xiao J, Wang C, Sprenkle V (2013) Bismuth nanoparticle decorating graphite felt as a high-performance electrode for an all-vanadium redox flow battery. Nano Lett 13(3):1330-335CrossRef
    5.Ge R, Sun H (2007) Bioinorganic chemistry of bismuth and antimony: target sites of metallodrugs. Acc Chem Res 40(4):267-74CrossRef
    6.Yu L, Fortuna F, O’Donnell B, Jeon T, Foldyna M, Picardi G, Roca i Cabarrocas P (2012) Bismuth-catalyzed and doped silicon nanowires for one-pump-down fabrication of radial junction solar cells. Nano Lett 12(8):4153-158CrossRef
    7.de Lima CA, Spinelli A (2013) Electrochemical behavior of progesterone at an ex situ bismuth film electrode. Electrochim Acta 107:542-48CrossRef
    8.Gich M, Fernández-Sánchez C, Cotet LC, Niu P, Roig A (2013) Facile synthesis of porous bismuth–carbon nanocomposites for the sensitive detection of heavy metals. J Mater Chem A 1(37):11410-1418CrossRef
    9.Chen X, Chen S, Huang W, Zheng J, Li Z (2009) Facile preparation of Bi nanoparticles by novel cathodic dispersion of bulk bismuth electrodes. Electrochim Acta 54(28):7370-373CrossRef
    10.Kim SH, Choi Y-S, Kang K, Yang SI (2007) Controlled growth of bismuth nanoparticles by electron beam irradiation in TEM. J Alloys Compd 427(1):330-32CrossRef
    11.An’amt MN, Radiman S, Huang NM, Yarmo MA, Ariyanto NP, Lim HN, Muhamad MR (2010) Sol–gel hydrothermal synthesis of bismuth–TiO2 nanocubes for dye-sensitized solar cell. Ceram Int 36(7):2215-220. doi:10.-016/?j.?ceramint.-010.-5.-27 CrossRef
    12.Xue F, Fei G, Wu B, Cui P, Zhang L (2005) Direct electrodeposition of highly dense Bi/Sb superlattice nanowire arrays. J Am Chem Soc 127(44):15348-5349CrossRef
    13.Jiang S, Huang Y-H, Luo F, Du N, Yan C-H (2003) Synthesis of bismuth with various morphologies by electrodeposition. Inorg Chem Commun 6(6):781-85CrossRef
    14.Zhou L, Dai Y, Zhang H, Jia Y, Zhang J, Li C (2012) Nucleation and growth of bismuth electrodeposition from alkaline electrolyte. Bull Kor Chem Soc 33(5):1541-546CrossRef
    15.Rathmell AR, Bergin SM, Hua YL, Li ZY, Wiley BJ (2010) The growth mechanism of copper nanowires and their properties in flexible, transparent conducting films. Adv Mater 22(32):3558-563CrossRef
    16.Chappaz-Gillot C, Salazar R, Berson S, Ivanova V (2013) Insights into CuSCN nanowire electrodeposition on flexible substrates. Electrochim Acta 110:375-81CrossRef
    17.Shao Y, Wang J, Wu H, Liu J, Aksay IA, Lin Y (2010) Graphene based electrochemical sensors and biosensors: a review. Electroanalysis 22(10):1027-036CrossRef
    18.Liu Y, Dong X, Chen P (2012) Biological and chemical sensors based on graphene materials. Chem Soc Rev 41(6):2283-307CrossRef
    19.Pumera M, Ambrosi A, Bonanni A, Chng ELK, Poh HL (2010) Graphene for electrochemical sensing and biosensing. TrAC Trends Anal Chem 29(9):954-65CrossRef
    20.Wang X, Zhang X (2013) Electrochemical co-reduction synthesis of graphene/nano-gold composites and its application to electrochemical glucose biosensor. Electrochim Acta 112:774-82CrossRef
    21.Meng L, Xia Y, Liu W, Zhang L, Zou P, Zhang Y (2015) Hydrogen microexplosion synthesis of platinum nanoparticles/nitrogen doped graphene nanoscrolls as new amperometric glucose biosensor. Electrochim Acta 152:330-37CrossRef
    22.Zeng Q, Cheng J-S, Liu X-F, Bai H-T, Jiang J-H (2011) Palladium nanoparticle/chitosan-grafted graphene nanocomposites for construction of a glucose biosensor. Biosens Bioelectron 26(8):3456-463CrossRef
    23.Fulati A, Ali SMU, Asif MH, Willander M, Br?nnmark C, Str?lfors P, B?rjesson SI, Elinder F, Danielsson B (2010) An intracellular glucose biosensor based on nanoflake ZnO. Sensors Actuators B Chem 150(2):673-80CrossRef
    24.Karuppiah C, Palanisamy S, Chen S-M, Veeramani V, Periakaruppan P (2014) A novel enzymatic glucose biosensor and sensitive non-enzymatic hydrogen peroxide sensor based on graphene and cobalt oxide nanoparticles composite modified glassy carbon electrode. Sensors Actuators B Chem 196:450-56CrossRef
    25.Chu X, Zhu X, Dong Y, Chen T, Ye M, Sun W (2012) An amperometric glucose biosensor based on the immobilization of glucose oxidase on the platinum electrode modified with NiO doped ZnO nanorods. J Electroanal Chem 676:20-6CrossRef
    26.Saleh FS, Mao L, Ohsaka T (2011) Development of a dehydrogenase-bas
  • 作者单位:Rajkumar Devasenathipathy (1)
    Raj Karthik (1)
    Shen-Ming Chen (1)
    Mohammad Ajmal Ali (2)
    Veerappan Mani (1)
    Bih-Show Lou (3)
    Fahad Mohammed Abdullrahman Al-Hemaid (2)

    1. Electroanalysis and Bioelectrochemistry Lab, Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No.1, Section 3, Chung-Hsiao East Road, Taipei, 106, Taiwan, Republic of China
    2. Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
    3. Chemistry Division, Center for General Education, Chang Gung University, Tao-Yuan, 333, Taiwan
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Analytical Chemistry
    Inorganic Chemistry
    Physical Chemistry
    Characterization and Evaluation Materials
    Monitoring, Environmental Analysis and Environmental Ecotoxicology
  • 出版者:Springer Wien
  • ISSN:1436-5073
文摘
We describe the electrochemical preparation of bismuth nanoribbons (Bi-NRs) with an average length of 100?±-0 nm and a width of 10?±- μm by a potentiostatic method. The process occurs on the surface of a glassy carbon electrode (GCE) in the presence of disodium ethylene diamine tetraacetate that acts as a scaffold for the growth of the Bi-NRs and also renders them more stable. The method was applied to the preparation of Bi-NRs incorporated into reduced graphene oxide. This nanocomposite was loaded with the enzyme glucose oxidase onto a glassy carbon electrode. The resulting biosensor displays an enhanced redox peak for the enzyme with a peak-to-peak separation of about 28 mV, revealing a fast electron transfer at the modified electrode. The loading of the GCE with electroactive GOx was calculated to be 8.54?×-0?0 mol?cm?, and the electron transfer rate constant is 4.40 s?. Glucose can be determined (in the presence of oxygen) at a relatively working potential of ?.46 V (vs. Ag|AgCl) in the 0.5 to 6 mM concentration range, with a 104 μM lower detection limit. The sensor also displays appreciable repeatability, reproducibility and remarkable stability. It was successfully applied to the determination of glucose in human serum samples.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700