Analysis of heat transfer and entropy generation for a low-Peclet-number microtube flow using a second-order slip model: an extended-Graetz problem
详细信息    查看全文
  • 作者:Barbaros ?etin (1)
    Soheila Zeinali (1)
  • 关键词:Extended ; Graetz problem ; Low Pe ; Microtube ; Second ; order slip model
  • 刊名:Journal of Engineering Mathematics
  • 出版年:2014
  • 出版时间:December 2014
  • 年:2014
  • 卷:89
  • 期:1
  • 页码:13-25
  • 全文大小:777 KB
  • 参考文献:1. Graetz L (1883) Uben die w?rmeleitungsf?higkeit von flüssigkeiten (On the thermal conductivity of liquids, part 1). Ann Phys Chem 18:79-4
    2. Graetz L (1885) Uben die w?rmeleitungsf?higkeit von flüssigkeiten (On the thermal conductivity of liquids, part 2). Ann Phys Chem 25:337-57 CrossRef
    3. Nusselt W (1910) Die abh?ngigkeit der w?rmebergangszahl von der rohrl?nge (The dependence of the heat transfer coefficient on the tube length). VDI Z 54:1154-158
    4. Shah RK, London AL (1978) Laminar flow forced convection in ducts: a source book for compact heat exchanger analytical data. Academic Press, New York, pp 78-38
    5. Lahjomri J, Quabarra A, Alemany A (2002) Heat transfer by laminar hartmann flow in thermal entrance region with a step change in wall temperatures: the Graetz problem extended. Int J Heat Mass Transf 45:1127-148 CrossRef
    6. Lahjomri J, Zniber K, Quabarra A, Alemany A (2003) Heat transfer by laminar hartmanns flow in thermal entrance region with uniform wall heat ux: the Graetz problem extended. Energy Convers Manag 44:11-4 CrossRef
    7. Dutta P, Horiuchi K, Yin HM (2006) Thermal characteristics of mixed electroosmotic and pressure-driven microflows. Comput Math Appl 52:651-70 CrossRef
    8. Horiuchi K, Dutta P, Hossain A (2006) Joule-heating effects in mixed electroosmotic and pressure-driven microflows under constant wall heat flux. J Eng Math 54:159-80 CrossRef
    9. Barron RF, Wang XM, Warrington RO, Ameel TA (1997) The Graetz problem extended to slip flow. Int J Heat Mass Transf 40:1817-823 CrossRef
    10. Ameel TA, Barron RF, Wang XM, Warrington RO (1997) Laminar forced convection in a circular tube with constant heat flux and slip flow. Microscale Thermophys Eng 1:303-20 CrossRef
    11. Larrode FE, Housiadas C, Drossinos Y (2000) Slip-flow heat transfer in circular tubes. Int J Heat Mass Transf 43:2669-680 CrossRef
    12. Ameel TA, Barron RF, Wang XM, Warrington RO (2001) Heat transfer in microtubes with viscous dissipation. Int J Heat Mass Transf 44:2395-403 CrossRef
    13. Tunc G, Bayazitoglu Y (2002) Convection at the entrance of micropipes with sudden wall temperature change. In ASME IMECE 2002, November 17-2, New Orleans, Lousiana
    14. Mikhailov MD, Cotta RM, Kakac S (2005) Steady state and periodic heat transfer in micro conduits. In: Kakac S, Vasiliev L, Bayazitoglu Y, Yener Y (eds) Microscale heat transfer-fundamentals and applications in biological systems and MEMS. Kluwer Academic Publisher, Dordrecht
    15. Jeong HE, Jeong JT (2006) Extended Graetz problem including streamwise conduction and viscous dissipation in microchannels. Int J Heat Mass Transf 49:2151-157 CrossRef
    16. Aydin O, Avc? M (2006) Analysis of micro-Graetz problem in a microtube. Nanoscale Microscale Thermophys Eng 10(4):345-58 CrossRef
    17. ?etin B, Yuncu H, Kaka? S (2006) Gaseous flow in microconduits with viscous dissipation. Int J Transp Phenom 8:297-15
    18. Haji-Sheikh A, Beck JV, Amos DE (2008) Axial heat conductioin effects in the entrance region of parallel plate ducts. Int J Heat Mass Transf 51:5811-822 CrossRef
    19. ?etin B, Yaz?c?og?lu AG, Kaka? S (2009) Slip-flow heat transfer in microtubes with axial conduction and viscous dissipation—an extended Graetz problem. Int J Therm Sci 48:1673-678 CrossRef
    20.
  • 作者单位:Barbaros ?etin (1)
    Soheila Zeinali (1)

    1. Mechanical Engineering Department, Microfluidics & Lab-on-a-chip Research Group, ?hsan Do?ramac?? Bilkent University, 06800?, Ankara, Turkey
  • ISSN:1573-2703
文摘
The classical Graetz problem, which is the problem of the hydrodynamically developed, thermally developing laminar flow of an incompressible fluid inside a tube neglecting axial conduction and viscous dissipation, is one of the fundamental problems of internal-flow studies. This study is an extension of the Graetz problem to include the rarefaction effect, viscous dissipation term and axial conduction with a constant wall temperature thermal boundary condition. The energy equation is solved to determine the temperature field analytically using general eigenfunction expansion with a fully developed velocity profile. To analyze the low-Peclet-number nature of the flow, the flow domain is extended from \(-\infty \) to \(+\infty \) . To model the rarefaction effect, a second-order slip model is implemented. The temperature distribution, local Nusselt number, and local entropy generation are determined in terms of confluent hypergeometric functions. This kind of theoretical study is important for a fundamental understanding of the convective heat transfer characteristics of flows at the microscale and for the optimum design of thermal systems, which includes convective heat transfer at the microscale, especially operating at low Reynolds numbers.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700