Apical control of conidiation in Aspergillus nidulans
详细信息    查看全文
  • 作者:Elixabet Oiartzabal-Arano ; Elixabet Perez-de-Nanclares-Arregi…
  • 关键词:Filamentous fungi ; Polar growth ; Asexual reproduction ; Conidiation ; Upstream developmental activation ; Central developmental pathway
  • 刊名:Current Genetics
  • 出版年:2016
  • 出版时间:May 2016
  • 年:2016
  • 卷:62
  • 期:2
  • 页码:371-377
  • 全文大小:903 KB
  • 参考文献:Adams TH, Wieser JK, Yu JH (1998) Asexual sporulation in Aspergillus nidulans. Microbiol Mol Biol Rev 62:35–54PubMed PubMedCentral
    Aguirre J (1993) Spatial and temporal controls of the Aspergillus brlA developmental regulatory gene. Mol Microbiol 8:211–218. doi:10.​1111/​j.​1365-2958.​1993.​tb01565.​x CrossRef PubMed
    Alkahyyat F, Ni M, Kim SC, Yu JH (2015) The WOPR domain protein OsaA orchestrates development in Aspergillus nidulans. PLoS One 10:e0137554. doi:10.​1371/​journal.​pone.​0137554 CrossRef PubMed PubMedCentral
    Arratia-Quijada J, Sanchez O, Scazzocchio C, Aguirre J (2012) FlbD, a Myb transcription factor of Aspergillus nidulans, is uniquely involved in both asexual and sexual differentiation. Eukaryot Cell 11:1132–1142. doi:10.​1128/​EC.​00101-12 CrossRef PubMed PubMedCentral
    Bayram O, Braus GH (2012) Coordination of secondary metabolism and development in fungi: the velvet family of regulatory proteins. FEMS Microbiol Rev 36:1–24. doi:10.​1111/​j.​1574-6976.​2011.​00285.​x CrossRef PubMed
    Bayram O, Braus GH, Fischer R, Rodriguez-Romero J (2010) Spotlight on Aspergillus nidulans photosensory systems. Fungal Genet Biol 47:900–908. doi:10.​1016/​j.​fgb.​2010.​05.​008 CrossRef PubMed
    Bebber DP, Ramotowski MAT, Gurr SJ (2013) Crop pests and pathogens move polewards in a warming world. Nature Clim Change 3:985–988 (Letter) CrossRef
    Braga GU, Rangel DE, Fernandes EK, Flint SD, Roberts DW (2015) Molecular and physiological effects of environmental UV radiation on fungal conidia. Curr Genet 61:405–425. doi:10.​1007/​s00294-015-0483-0 CrossRef PubMed
    Calvo AM (2008) The VeA regulatory system and its role in morphological and chemical development in fungi. Fungal Genet Biol 45:1053–1061. doi:10.​1016/​j.​fgb.​2008.​03.​014 CrossRef PubMed
    Canovas D, Marcos AT, Gacek A, Ramos MS, Gutierrez G, Reyes-Dominguez Y, Strauss J (2014) The histone acetyltransferase GcnE (GCN5) plays a central role in the regulation of Aspergillus asexual development. Genetics 197:1175–1189. doi:10.​1534/​genetics.​114.​165688 CrossRef PubMed PubMedCentral
    Castillo EA, Ayte J, Chiva C, Moldon A, Carrascal M, Abian J, Jones N, Hidalgo E (2002) Diethylmaleate activates the transcription factor Pap1 by covalent modification of critical cysteine residues. Mol Microbiol 45:243–254. doi:10.​1046/​j.​1365-2958.​2002.​03020.​x CrossRef PubMed
    Cortese MS, Etxebeste O, Garzia A, Espeso EA, Ugalde U (2011) Elucidation of functional markers from Aspergillus nidulans developmental regulator FlbB and their phylogenetic distribution. PLoS One 6:e17505. doi:10.​1371/​journal.​pone.​0017505
    Etxebeste O, Takeshita N (2015) Fluorescence-based methods for the study of protein localization, interaction, and dynamics in filamentous fungi. In: Dahms TES, Czymmek KJ (eds) Advanced microscopy in mycology. Springer International Publishing, Berlin, pp 27–46
    Etxebeste O, Ni M, Garzia A, Kwon NJ, Fischer R, Yu J-H, Espeso EA, Ugalde U (2008) Basic-Zipper-type transcription factor FlbB controls asexual development in Aspergillus nidulans. Eukaryot Cell 7:38–48CrossRef PubMed PubMedCentral
    Etxebeste O, Herrero-Garcia E, Araujo-Bazan L, Rodriguez-Urra AB, Garzia A, Ugalde U, Espeso EA (2009) The bZIP-type transcription factor FlbB regulates distinct morphogenetic stages of colony formation in Aspergillus nidulans. Mol Microbiol 73:775–789. doi:10.​1111/​j.​1365-2958.​2009.​06804.​x CrossRef PubMed
    Etxebeste O, Ugalde U, Espeso EA (2010) Adaptative and developmental responses to stress in Aspergillus nidulans. Curr Protein Pept Sci 11:704–718. doi:10.​2174/​1389203107945576​82 CrossRef PubMed
    Fischer R, Kues U (2006) Asexual sporulation in mycelial fungi. In: Kües U, Fischer R (eds) The Mycota I: Growth, differentiation and sexuality. The Mycota. Springer, Berlin, Heidelberg. doi:10.​1007/​3-540-28135-5_​14
    Fisher MC, Henk DA, Briggs CJ, Brownstein JS, Madoff LC, McCraw SL, Gurr SJ (2012) Emerging fungal threats to animal, plant and ecosystem health. Nature 484:186–194. doi:10.​1038/​nature10947 CrossRef PubMed
    Garzia A, Etxebeste O, Herrero-Garcia E, Fischer R, Espeso EA, Ugalde U (2009) Aspergillus nidulans FlbE is an upstream developmental activator of conidiation functionally associated with the putative transcription factor FlbB. Mol Microbiol 71:172–184. doi:10.​1111/​j.​1365-2958.​2008.​06520.​x
    Garzia A, Etxebeste O, Herrero-Garcia E, Ugalde U, Espeso EA (2010) The concerted action of bZip and cMyb transcription factors FlbB and FlbD induces brlA expression and asexual development in Aspergillus nidulans. Mol Microbiol 75:1314–1324. doi:10.​1111/​j.​1365-2958.​2010.​07063.​x
    Gregory PH (1966) The fungus spore: what it is and what it does. In: Madelin MF (ed) The fungus spore. Butterworths, London, pp 1–13
    Gutierrez-Correa M, Ludena Y, Ramage G, Villena GK (2012) Recent advances on filamentous fungal biofilms for industrial uses. Appl Biochem Biotechnol 167:1235–1253. doi:10.​1007/​s12010-012-9555-5 CrossRef PubMed
    Han S, Navarro J, Greve RA, Adams TH (1993) Translational repression of brlA expression prevents premature development in Aspergillus. EMBO J 12:2449–2457PubMed PubMedCentral
    Harispe L, Portela C, Scazzocchio C, Penalva MA, Gorfinkiel L (2008) Ras GTPase-activating protein regulation of actin cytoskeleton and hyphal polarity in Aspergillus nidulans. Eukaryot Cell 7:141–153. doi:10.​1128/​EC.​00346-07
    Herrero-Garcia E, Garzia A, Cordobes S, Espeso EA, Ugalde U (2011) 8-Carbon oxylipins inhibit germination and growth, and stimulate aerial conidiation in Aspergillus nidulans. Fungal Biol 115:393–400. doi:10.​1016/​j.​funbio.​2011.​02.​005
    Herrero-Garcia E, Perez-de-Nanclares-Arregi E, Cortese MS, Markina-Inarrairaegui A, Oiartzabal-Arano E, Etxebeste O, Ugalde U, Espeso EA (2015) Tip-to-nucleus migration dynamics of the asexual development regulator FlbB in vegetative cells. Mol Microbiol. doi:10.​1111/​mmi.​13156 PubMed
    Jansen RP, Niessing D, Baumann S, Feldbrugge M (2014) mRNA transport meets membrane traffic. Trends Genet 30:408–417. doi:10.​1016/​j.​tig.​2014.​07.​002
    Karos M, Fischer R (1996) hymA (hypha-like metulae), a new developmental mutant of Aspergillus nidulans. Microbiology 142(Pt 11):3211–3218. doi:10.​1099/​13500872-142-11-3211 CrossRef PubMed
    Kwon NJ, Garzia A, Espeso EA, Ugalde U, Yu JH (2010) FlbC is a putative nuclear C2H2 transcription factor regulating development in Aspergillus nidulans. Mol Microbiol 77:1203–1219. doi:10.​1111/​j.​1365-2958.​2010.​07282.​x
    Lee MK, Kwon NJ, Choi JM, Lee IS, Jung S, Yu JH (2014) NsdD is a key repressor of asexual development in Aspergillus nidulans. Genetics 197:159–173. doi:10.​1534/​genetics.​114.​161430
    Leeder AC, Turner G (2008) Characterisation of Aspergillus nidulans polarisome component BemA. Fungal Genet Biol 45:897–911. doi:10.​1016/​j.​fgb.​2007.​12.​001
    Manck R, Ishitsuka Y, Herrero S, Takeshita N, Nienhaus GU, Fischer R (2015) Genetic evidence for a microtubule-capture mechanism during polarised growth of Aspergillus nidulans. J Cell Sci 128:3569–3582. doi:10.​1242/​jcs.​169094
    Mims CW, Richardson WD, Timberlake WE (1988) Ultrastructural analysis of conidiophore development in the fungus Aspergillus nidulans using freeze-substitution. Protoplasma 244:132–141CrossRef
    Momany M (2015) Rite of passage: a bZIP transcription factor must transit the cell apex to become competent. Mol Microbiol. doi:10.​1111/​mmi.​13224 PubMed
    Ni M, Yu JH (2007) A novel regulator couples sporogenesis and trehalose biogenesis in Aspergillus nidulans. PLoS One 2:e970. doi:10.​1371/​journal.​pone.​0000970
    Oiartzabal-Arano E, Garzia A, Gorostidi A, Ugalde U, Espeso EA, Etxebeste O (2015) Beyond asexual development: modifications in the gene expression profile caused by the absence of the Aspergillus nidulans transcription factor FlbB. Genetics 199:1127–1142. doi:10.​1534/​genetics.​115.​174342
    Park HS, Yu JH (2012) Genetic control of asexual sporulation in filamentous fungi. Curr Opin Microbiol 15:669–677. doi:10.​1016/​j.​mib.​2012.​09.​006
    Perez-de-Nanclares-Arregi E, Etxebeste O (2014) Photo-convertible tagging for localization and dynamic analyses of low-expression proteins in filamentous fungi. Fungal Genet Biol 70:33–41. doi:10.​1016/​j.​fgb.​2014.​06.​006
    Riquelme M (2013) Tip growth in filamentous fungi: a road trip to the apex. Annu Rev Microbiol 67:587–609. doi:10.​1146/​annurev-micro-092412-155652 CrossRef PubMed
    Rodriguez-Urra AB, Jimenez C, Nieto MI, Rodriguez J, Hayashi H, Ugalde U (2012) Signaling the induction of sporulation involves the interaction of two secondary metabolites in Aspergillus nidulans. ACS Chem Biol 7:599–606. doi:10.​1021/​cb200455u CrossRef PubMed
    Rohrig J, Kastner C, Fischer R (2013) Light inhibits spore germination through phytochrome in Aspergillus nidulans. Curr Genet 59:55–62. doi:10.​1007/​s00294-013-0387-9 CrossRef PubMed
    Schutze K, Harter K, Chaban C (2008) Post-translational regulation of plant bZIP factors. Trends Plant Sci 13:247–255. doi:10.​1016/​j.​tplants.​2008.​03.​002
    Sewall TC, Mims CW, Timberlake WE (1990) abaA controls phialide differentiation in Aspergillus nidulans. Plant Cell 2:731–739. doi:10.​1105/​tpc.​2.​8.​731 CrossRef PubMed PubMedCentral
    Shi Y, Pellarin R, Fridy PC, Fernandez-Martinez J, Thompson MK, Li Y, Wang QJ, Sali A, Rout MP, Chait BT (2015) A strategy for dissecting the architectures of native macromolecular assemblies. Nat Methods. doi:10.​1038/​nmeth.​3617
    Spitz F, Furlong EE (2012) Transcription factors: from enhancer binding to developmental control. Nat Rev Genet 13:613–626. doi:10.​1038/​nrg3207
    Takeshita N, Manck R, Grun N, de Vega SH, Fischer R (2014) Interdependence of the actin and the microtubule cytoskeleton during fungal growth. Curr Opin Microbiol 20C:34–41. doi:10.​1016/​j.​mib.​2014.​04.​005
    Teichert I, Wolff G, Kuck U, Nowrousian M (2012) Combining laser microdissection and RNA-seq to chart the transcriptional landscape of fungal development. BMC Genomics 13:511. doi:10.​1186/​1471-2164-13-511
    Tsitsigiannis DI, Kowieski TM, Zarnowski R, Keller NP (2005) Three putative oxylipin biosynthetic genes integrate sexual and asexual development in Aspergillus nidulans. Microbiology 151:1809–1821. doi:10.​1099/​mic.​0.​27880-0
    Virag A, Lee MP, Si H, Harris SD (2007) Regulation of hyphal morphogenesis by cdc42 and rac1 homologues in Aspergillus nidulans. Mol Microbiol 66:1579–1596. doi:10.​1111/​j.​1365-2958.​2007.​06021.​x
    Wieser J, Lee BN, Fondon J III, Adams TH (1994) Genetic requirements for initiating asexual development in Aspergillus nidulans. Curr Genet 27:62–69. doi:10.​1007/​BF00326580 CrossRef PubMed
    Wieser J, Yu JH, Adams TH (1997) Dominant mutations affecting both sporulation and sterigmatocystin biosynthesis in Aspergillus nidulans. Curr Genet 32:218–224CrossRef PubMed
    Zhang J, Debets AJ, Verweij PE, Melchers WJ, Zwaan BJ, Schoustra SE (2015) Asexual sporulation facilitates adaptation: the emergence of azole resistance in Aspergillus fumigatus. Evolution 69:2573–2586. doi:10.​1111/​evo.​12763 CrossRef PubMed
  • 作者单位:Elixabet Oiartzabal-Arano (1)
    Elixabet Perez-de-Nanclares-Arregi (1)
    Eduardo A. Espeso (2)
    Oier Etxebeste (1)

    1. Biochemistry II Laboratory, Department of Applied Chemistry, Faculty of Chemistry, University of The Basque Country (UPV/EHU), Manuel de Lardizabal, 3, 20018, San Sebastian, Spain
    2. Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, 28040, Madrid, Spain
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Life Sciences
    Microbial Genetics and Genomics
    Microbiology
    Biochemistry
    Cell Biology
    Plant Sciences
    Proteomics
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1432-0983
文摘
The infection cycle of filamentous fungi consists of two main stages: invasion (growth) and dispersion (development). After the deposition of a spore on a host, germination, polar extension and branching of vegetative cells called hyphae allow a fast and efficient invasion. Under suboptimal conditions, genetic reprogramming of hyphae results in the generation of asexual spores, allowing dissemination to new hosts and the beginning of a new infection cycle. In the model filamentous fungus Aspergillus nidulans, asexual development or conidiation is induced by the upstream developmental activation (UDA) pathway. UDA proteins transduce signals from the tip, the polarity site of hyphae, to nuclei, where developmental programs are transcriptionally activated. The present review summarizes the current knowledge on this tip-to-nucleus communication mechanism, emphasizing its dependence on hyphal polarity. Future approaches to the topic will also be suggested, as stimulating elements contributing to the understanding of how apical signals are coupled with the transcriptional control of development and pathogenesis in filamentous fungi.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700