Mitigation of operational losses in matrix converter fed DFIG for WECS
详细信息    查看全文
  • 作者:Haroon Ashfaq ; Surendra Kumar Tripathi
  • 关键词:Wind energy conversion system ; Matrix converter ; Doubly fed induction generator ; Power electronic converter ; Common mode voltage
  • 刊名:Renewables
  • 出版年:2015
  • 出版时间:December 2015
  • 年:2015
  • 卷:2
  • 期:1
  • 全文大小:3887KB
  • 参考文献:Arifujjaman, M. (2013). Reliability comparison of power electronic converters for grid-connected 1.5kw wind energy conversion system. Renewable Energy, 57, 348鈥?57.CrossRef
    Ashfaq, H., Tripathi, S. K. (2012) Performance Improvement of Wind Energy Conversion System using Matrix Converter. IEEE 5th India International Conference on Power Electronics (IICPE), 1鈥?.
    Blaabjerg, F, Liserre, M, & Ke, M. (2012). Power electronics converters for wind turbine systems. IEEE Transactions on Industry Applications, 48(2), 708鈥?19.CrossRef
    C谩rdenas, R, Pe帽a, R, Wheeler, P, Clare, J, & Juri, C. (2012). Control of a matrix converter for the operation of autonomous systems. Renewable Energy, 43, 343鈥?53.CrossRef
    Cardenas, R, Pena, R, Alepuz, S, & Asher, G. (2013). Overview of control systems for the operation of DFIGs in wind energy applications. IEEE Transactions onIndustrial Electronics, 60(7), 2776鈥?798.CrossRef
    C谩rdenas, R, Pe帽a, R, Wheeler, P, Clare, J, Mu帽oz, A, & Sureda, A. (2013a). Control of a wind generation system based on a Brushless Doubly-Fed Induction Generator fed by a matrix converter. Electric Power Systems Research, 103, 49鈥?0.CrossRef
    C谩rdenas, R, Pe帽a, R, Clare, J, Wheeler, P, & Zanchetta, P. (2013b). A repetitive control system for four-leg matrix converters feeding non-linear loads. Electric Power Systems Research, 104, 18鈥?7.CrossRef
    Casadei, D, Serra, G, Tani, A, & Zarri, L. (2002). Matrix converter modulation strategies: a new general approach based on space-vector representation of the switch state. IEEE Transactions Industrial Electronics, 49(2), 370鈥?81.CrossRef
    Garc茅s, A, & Molinas, M. (2012). A study of efficiency in a reduced matrix converter for offshore wind farms. IEEE Transactions on Industrial Electronics, 59(1), 184鈥?93.CrossRef
    Ghatpande, O., Corzine, K., Fajri, P., Ferdowsi, M. (2013). Multiple Reference Frame Theory for Harmonic Compensation via Doubly Fed Induction Generators. IEEE Power and Energy Conference (PECI), 60鈥?4. doi: 10.1109/PECI.2013.6506035
    Ghoudelbourk, S., Bahi, T., Mohammedi, M. (2012). Improving the Quality of Energy Supplied by a Doubly-Fed Induction Generator. 2nd International Symposium on Environment Friendly Energies and Applications (EFEA), 437鈥?/em>442.
    Hamane, B, Benghanemm, M, Bouzid, AM, Belabbes, A, Bouhamida, M, & Draou, A. (2012). Control for variable speed wind turbine driving a doubly fed induction generator using Fuzzy-PI control. Energy Procedia, 18, 476鈥?85.CrossRef
    Han, Y, Kim, S, Jung-Ik, H, & Lee, WJ. (2013). A doubly fed induction generator controlled in single-sided grid connection for wind turbines. IEEE Transactions on Energy Conversion, 28(2), 413鈥?24.CrossRef
    Holmes, DG. (1996). The significance of zero space vector placement for carrier-based PWM schemes. IEEE Transactions on Industry Applications, 32, 1122鈥?129.CrossRef
    Lee, HD, & Sul, SK. (2001). Common-mode voltage reduction method modifying the distribution of zero-voltage vector in PWM converter/inverter system. IEEE Transaction on Industry Applications, 37(5), 1732鈥?738.
    Lee, MY, Wheeler, P, & Klumpner, C. (2010). Space-vector modulated multilevel matrix converter. IEEE Transactions on Industry Applications, 57(10), 3385鈥?394.
    Lopez Arevalo, S, Zanchetta, P, Wheeler, P, Trentin, A, & Empringham, L. (2010). Control and implementation of a matrix-converterbased AC-ground power-supply unit for aircraft servicing. IEEE Transactions Industrial Electronics, 57(6), 2076鈥?084.CrossRef
    Merahi, F, & Berkouk, EM. (2013). Back-to-back five-level converters for wind energy conversion system with dc-bus imbalance minimization. Renewable Energy, 60, 137鈥?49.CrossRef
    Ormaetxea, E, Andreu, J, Kortabarria, I, Bidarte, U, Martinez-de-Alegria, I, Ibarra, E, & Olaguenaga, E. (2011). Matrix converter protection and computational capabilities based on a system on chip design with an FPGA. IEEE Transactions Power Electronics, 26(1), 272鈥?87.CrossRef
    pdf.datasheetcatalog.com/datasheet/鈥?mXyzxuz.pdf
    Pena, R, Cardenas, R, Reyes, E, Clare, J, & Wheeler, P. (2011). Control of a doubly fed induction generator via an indirect matrix converter with changing dc voltage. IEEE Transactions on Industrial Electronics, 58(10), 4664鈥?674.CrossRef
    Ponmani, C, & Rajaram, M. (2013). Compensation strategy of matrix converter fed induction motor drive under input voltage and load disturbances using internal model control. International Journal of Electrical Power & Energy Systems, 44(1), 43鈥?1.CrossRef
    Rodriguez, J., Kolar, J., Espinoza, J., Rivera, M., Rojas, C. (2010). Predictive torque and flux control of an induction machine fed by an indirect matrix converter. IEEE ICIT Proceedings, 1857鈥?863.
    Roy, G, & April, G-E. (1989). Cycloconverter operation under a new scalar control algorithm. 20th Annual IEEE Power Electronics Specialists Conference Proceeding, 1, 368鈥?75.CrossRef
    Soufi, Y, Bahi, T, Lekhchine, S, & Dib, D. (2013). Performance analysis of DFIM fed by matrix converter and multi level inverter. Energy Conversion and Management, 72, 187鈥?93.CrossRef
    Swamy, MM, Yamada, K, & Kume, T. (2001). Common mode current attenuation techniques for use with PWM drives. IEEE Transaction on Power Electronics, 16(2), 248鈥?5.CrossRef
    Taib, N, Metidji, B, & Rekioua, T. (2013). Performance and efficiency control enhancement of wind power generation system based on DFIG using three-level sparse matrix converter. International Journal of Electrical Power & Energy Systems, 53, 287鈥?96.CrossRef
    Ugalde-Loo, CE, Ekanayake, JB, & Jenkins, N. (2013). State-space modeling of wind turbine generators for power system studies. IEEE Transactions on Industry Application, 49(1), 223鈥?2.CrossRef
    Vargas, R, Rodriguez, J, Ammann, U, & Wheeler, P. (2008a). Predictive current control of an induction machine fed by a matrix converter with reactive power control. IEEE Transactions Industrial Electronics, 55(12), 4362鈥?371.CrossRef
    Vargas, R, Ammann, U, Rodriguez, J, & Pontt, J. (2008b). Predictive strategy to control common-mode voltage in loads fed by matrix converters,鈥? IEEE Transactions Industrial Electronics, 55(12), 4372鈥?380.CrossRef
    Venturini, M. (1980). A new sine wave in sine wave out, conversion technique which eliminates reactive elements. Powercon Proceeding, 7, E3/1鈥揈3/15.
    Wei, S, Zargari, N, Wu, B, & Rizzo, S. (2004). Comparison and mitigation of common mode voltage in power converter topologies. IEEE Industry Applications Conference, 3, 1852鈥?857.
    www.鈥媋lldatasheet.鈥媍om
    www.鈥媎atasheetarchive鈥?鈥媍om
    www.鈥媎atasheetarchive鈥?鈥媍om/鈥媘atrix%20鈥媍onverter-datasheet.鈥媓tml
    http://鈥媤ww.鈥媎atasheetarchive鈥?鈥媍om/鈥媝df/鈥婦atasheets-SW17/鈥婦SASW00331822.鈥媓tml
    www.鈥媔gbt.鈥媍n/鈥婾serFiles/鈥婼upport_鈥婭GBT/鈥媐ile_鈥?57.鈥媝df
    Xiao, D., Rahman, F. (2009). An improved DTC for matrix converter drives using multi-mode ISVM and unity input power factor correction. 13th EPE Proceeding, 1鈥?0.
    Yin, Q, Russel, JK, Thomas, AN, & Lu, H. (2005). Analytical investigation of the switching frequency harmonic characteristic for common mode reduction modulator. IEEE Industry Applications Conference, 2, 1398鈥?405.
    Yoon, YD, & Sul, SK. (2006). Carrier-based modulation technique for matrix converter. IEEE Transactions Power Electronics, 21(6), 1691鈥?703.CrossRef
    Yue, F, Wheeler, P, & Clare, J. (2006). Relationship of modulation schemes for matrix converters (pp. 266鈥?70). Dublin, Ireland: IET PEMD Conference Proceeding.
  • 作者单位:Haroon Ashfaq (1)
    Surendra Kumar Tripathi (1)

    1. Department of Electrical Engineering, Faculty of Engineering and Technology, Jamia Millia Islamia, New Delhi, 110025, India
  • 刊物类别:Renewable and Green Energy; Energy Technology; Energy Policy, Economics and Management; Water Indust
  • 刊物主题:Renewable and Green Energy; Energy Technology; Energy Policy, Economics and Management; Water Industry/Water Technologies;
  • 出版者:Springer Singapore
  • ISSN:2198-994X
文摘
With the change in the wind profile, the speed of doubly fed induction generator (DFIG) of wind energy conversion system (WECS) changes from super synchronous to sub synchronous range and vice versa. DFIG is operated to generate quality power; hence, power at rotor side is controlled using matrix converter taking power from grid and feeding back power to the grid depending on the wind profile. Input voltage required to be fed to the rotor side of DFIG is always changing and depends on the speed of the available wind. During the operation when power is fed from grid to rotor of DFIG, a high-voltage stress continues across the switches of power electronic converter (PEC). In existing topologies of the matrix converter used with the DFIG in WECS, the constant voltage stress at the power electronic switch (PES) is available which causes the higher losses across the switch. This also causes common mode voltage (CMV) which leads to the over voltage stress. This may cause winding insulation damage and bearing failure of the DFIG. Furthermore, higher dv/dt of CMV raises the leakage current which causes the thermal stress and electromagnetic noise to the equipments installed near the matrix converter. In this paper, the work done is focused on the mitigation of operational losses in matrix converter fed doubly fed induction generator for wind energy conversion system. The overall loss in the matrix converter and mitigation of common mode voltage is achieved, which improves the overall efficiency and the performance of the wind energy conversion system. Keywords Wind energy conversion system Matrix converter Doubly fed induction generator Power electronic converter Common mode voltage

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700