Modeling and Control of DFIG Through Back-to-Back Five Levels Converters Based on Neuro-Fuzzy Controller
详细信息    查看全文
  • 作者:Abdelhak Dida ; Djilani Benattous
  • 关键词:Wind turbine ; MPPT ; DFIG ; Multilevel converters ; Neuro ; fuzzy controller ; ANFIS
  • 刊名:Journal of Control, Automation and Electrical Systems
  • 出版年:2015
  • 出版时间:October 2015
  • 年:2015
  • 卷:26
  • 期:5
  • 页码:506-520
  • 全文大小:3,028 KB
  • 参考文献:Adabi, M. E., & Vahedi, A. (2011). A hysteresis current control strategy for common- mode voltage reduction in AC drive systems. International Review of Electrical Engineering, 6(2), 607.
    Adabi, M. E., & Vahedi, A. (2013). A survey of shaft voltage reduction strategies for induction generators in wind energy applications. Renewable Energy, 50, 177-87.CrossRef
    Akhmatov, V. (2003). Analysis of dynamic behavior of electric Power systems with large amount of wind power. PhD Thesis, Electric power Engineering Orsted-D’TU, Technical University of Denmark, Kgs. Lyngby, Denmark.
    Bellmunt, O. G., Ferre, A. J., Sumper, A., & Jane, J. B. (2008). Ride-through control of a doubly fed induction generator under unbalanced voltage sags. IEEE Transactions on Energy Conversion, 23, 1036-045.CrossRef
    Belmokhtar, K., Mamadou. Doumbia, L., & Agbossou, K. (2012). Modelling and fuzzy logic control of DFIG based wind energy conversion systems. In International symposium on industrial electronics (ISIE) (pp. 1888-893).
    Bezza, M., Moussaoui, B. E. L., & Fakkar, A. (2012). Sensorless MPPT fuzzy controller for DFIG wind turbine. Energy Procedia, 18, 339-48.CrossRef
    Bouaouiche, T., & Machmoum, M. (2006). Control and stability analysis of a doubly fed induction generator. In 12th international power electronics and motion control conference (EPE-PEMC), Portoroz (pp. 1602-607).
    Duan, Q., Hao, F., & Feng, S. (2008). Adaptive fuzzy control used in DFIG VSCF wind power generator system. In IEEE 7th world congress on intelligent control and automation, Chongqing, China (pp. 29-2).
    El-Aimani S. (2009). Practical identification of a DFIG based wind generator model for grid assessment. IEEE international conference on multimedia computing and systems (ICMCS -9) (pp. 278-85).
    El-Aimani, S., Francois, B., Minne, F., & Robyns, B. (2003). Modeling and simulation of doubly fed induction generators for variable speed wind turbines integrated in a distribution network. In 10th European conference on power electronics and applications, Toulouse, France.
    Emilio, J. B., Santiago, C., Rodriguez, F. J., Hernandez, A., & Espinosa, F. (2008). Design of a back-to-back NPC converter interface for wind turbines with squirrel-cage induction generator. IEEE Transactions on Energy Conversion, 23, 932-45.CrossRef
    Forchetti, D. G., Solsona, J. A., Garcia, G. O., & Valla, M. I. (2007). A control strategy for stand-alone wound rotor induction generator. Electric Power Systems Research, 77, 163-69.CrossRef
    Galvez-Carillo, M. G. (2011). Sensor fault diagnosis for wind-driven doubly-fed induction generators. PhD thesis, Free university of Belgium (ULB), Brussels, Belgium.
    Ghedamsi, K., Aouzellag, D., & Berkouk, E. M. (2008). Control of wind generator associated to a flywheel energy storage system. Renewable Energy, 21, 45-6.
    Guedouani, R., Faila, B., Berkouk, E. M., & Bouchrit, M. S. (2012). New control strategy of three-phase five-level NPC rectifier-inverter system for induction machine drive. Energy Procedia, 18, 1382-391.CrossRef
    Hu, J., He, Y., Xu, L., & Williams, B. W. (2009). Improved control of DFIG systems during network unbalance using PI-R current regulators. IEEE Transactions on Industrial Electronics, 56(2), 439-51.CrossRef
    Hu, J., & He, Y. (2006). Dynamic modeling and robust current control of wind turbine used DFIG during AC voltage dip. Journal of Zhejiang University Science A, 7(10), 1757-764.MathSciNet CrossRef MATH
    Hu, J., Nian, H., Hu, B., He, Y., & Zhu, Z. Q. (2010). Direct active and reactive power regulation of DFIG using sliding-mode control approach. IEEE Transactions on energy conversion, 25(4), 1028-039.CrossRef
    Jabr, H. M., & Narayan Kar, C. (2007). Neuro-fuzzy vector control for doubly-fed wind driven induction generator. In IEEE electrical power conference, Canada (EPC) (pp. 236-41).
    Jang, J. S. (1993). ANFIS: Adaptive-network-based fuzzy inference system. IEEE Trans. Syst. Man Cybern., 23(3), 665-84.
    Jiabing, H., Yikang, H., Lie, X., & Barry, W. (2009). Improved control of DFIG systems during network unbalance using PI–R current regulators. IEEE Transactions on Industrial Electronics, 56(2), 439-51.CrossRef
    Lindgren, M., & Svensson, J. (1995). Connecting fast switching voltage source converters to the grid-harmonic distortion and its reduction. IEEE Stockholm power tech conference, Stockholm, Sweden (pp. 191-95).
    Lindholm, M. (2003). Doubly fed drives for variable speed wind turbines-A 40 kW laboratory setup. PhD thesis, Technical University of Denmark, Lyngby, Denmark.
    Merahi, F., & Berkouk, E. M. (2013). Back-to-back five-level converters for wind energy conversion system with DC-bus imbalance minimization. Renewable Energy, 60, 137-49.CrossRef
    Merahi, F., & Berkouk, E. M. (2011). Five level converters cascade integrated in wind chain. In 12th international conference on science and techniques of automatic control & computer engineering
  • 作者单位:Abdelhak Dida (1)
    Djilani Benattous (2)

    1. Department of Electrical Engineering, Biskra University, 07000, Biskra, Algeria
    2. Department of Electrical Engineering, El-Oued University, 39000, El Oued, Algeria
  • 刊物主题:Electrical Engineering; Control, Robotics, Mechatronics; Control; Robotics and Automation;
  • 出版者:Springer US
  • ISSN:2195-3899
文摘
This paper deals with the power generation control in variable speed wind turbine. In this context, the wind energy conversion system (WECS) is equipped with a doubly fed induction generator (DFIG) and back-to-back five-level neutral-point-clamped converters in the rotor circuit. The modeling and the control of the five-level converter is presented. A vector control of the rotor side converter allows independent control of the stator active and reactive power and optimal speed tracking for maximum power capture from the wind. An adaptive neuro-fuzzy inference system is proposed as alternative of Mamdani type fuzzy controller to improve the robustness and reject any disturbance in the system. Three neuro-fuzzy controllers (NFCs) are used to control the rotational speed, and the stator active and reactive power. Another fuzzy logic system is proposed as a PI gain tuner in the DC-link voltage control loop to improve the dynamic response and robustness of the DC-link voltage control. In purpose to prove the performances of the global system, simulation was carried out in Matlab–Simulink software environment with 1.5MW DFIG-WECS. Keywords Wind turbine MPPT DFIG Multilevel converters Neuro-fuzzy controller ANFIS

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700