Upregulation of prolylcarboxypeptidase (PRCP) in lipopolysaccharide (LPS) treated endothelium promotes inflammation
详细信息    查看全文
  • 作者:My-Linh Ngo (1)
    Fakhri Mahdi (2)
    Dhaval Kolte (1)
    Zia Shariat-Madar (1)
  • 刊名:Journal of Inflammation
  • 出版年:2009
  • 出版时间:December 2009
  • 年:2009
  • 卷:6
  • 期:1
  • 全文大小:604KB
  • 参考文献:1. Tamaoki J, Sugimoto F, Tagaya E, Isono K, Chiyotani A, Konno K: Angiotensin II 1 receptor-mediated contraction of pulmonary artery and its modulation by prolylcarboxypeptidase. / J Appl Physiol 1994, 76: 1439-444.
    2. Kumamoto K, Stewart TA, Johnson AR, Erdos EG: Prolylcarboxypeptidase (angiotensinase C) in human lung and cultured cells. / J Clin Invest 1981, 67: 210-15. CrossRef
    3. Mallela J, Yang J, Shariat-Madar Z: Prolylcarboxypeptidase: A cardioprotective enzyme. / Int J Biochem Cell Biol 2008.
    4. Zhao Y, Qiu Q, Mahdi F, Shariat-Madar Z, Rojkjaer R, Schmaier AH: Assembly and activation of HK-PK complex on endothelial cells results in bradykinin liberation and NO formation. / Am J Physiol Heart Circ Physiol 2001, 280: H1821-H1829.
    5. Colman RW, Schmaier AH: Contact system: a vascular biology modulator with anticoagulant, profibrinolytic, antiadhesive, and proinflammatory attributes. / Blood 1997, 90: 3819-843.
    6. Castro CH, Santos RA, Ferreira AJ, Bader M, Alenina N, Almeida AP: Evidence for a functional interaction of the angiotensin-(1-) receptor Mas with AT1 and AT2 receptors in the mouse heart. / Hypertension 2005, 46: 937-42. CrossRef
    7. Toossi Z, Sedor JR, Mettler MA, Everson B, Young T, Ratnoff OD: Induction of expression of monocyte interleukin 1 by Hageman factor (factor XII). / Proc Natl Acad Sci USA 1992, 89: 11969-1972. CrossRef
    8. Ghebrehiwet B, Silverberg M, Kaplan AP: Activation of the classical pathway of complement by Hageman factor fragment. / J Exp Med 1981, 153: 665-76. CrossRef
    9. Discipio RG: The activation of the alternative pathway C3 convertase by human plasma kallikrein. / Immunology 1982, 45: 587-95.
    10. Kaplan AP, Kay AB, Austen KF: A prealbumin activator of prekallikrein. 3. Appearance of chemotactic activity for human neutrophils by the conversion of human prekallikrein to kallikrein. / J Exp Med 1972, 135: 81-7. CrossRef
    11. Wachtfogel YT, Kucich U, James HL, Scott CF, Schapira M, Zimmerman M, Cohen AB, Colman RW: Human plasma kallikrein releases neutrophil elastase during blood coagulation. / J Clin Invest 1983, 72: 1672-677. CrossRef
    12. Ichinose A, Fujikawa K, Suyama T: The activation of pro-urokinase by plasma kallikrein and its inactivation by thrombin. / J Biol Chem 1986, 261: 3486-489.
    13. [Vascular wall lesion and disorder of endothelial vasoregulating function in patients with ankylosing spondylitis] / Klin Med (Mosk) 2007, 85: 54-7.
    14. Colman RW, Wong PY: Participation of Hageman factor dependent pathways in human disease states. / Thromb Haemost 1977, 38: 751-75.
    15. Martinez-Brotons F, Oncins JR, Mestres J, Amargos V, Reynaldo C: Plasma kallikrein-kinin system in patients with uncomplicated sepsis and septic shock -comparison with cardiogenic shock. / Thromb Haemost 1987, 58: 709-13.
    16. Becker CG, Wagner M, Kaplan AP, Silverberg M, Grady RW, Liem H, Muller-Eberhard U: Activation of factor XII-dependent pathways in human plasma by hematin and protoporphyrin. / J Clin Invest 1985, 76: 413-19. CrossRef
    17. Fujita M, Izutani W, Komurasaki Y: Effect of urinary protein C inhibitor on lipopolysaccharide-induced disseminated intravascular coagulation in rats. / Thromb Haemost 2000, 84: 54-8.
    18. Takano M, Horie M, Yayama K, Okamoto H: Lipopolysaccharide injection into the cerebral ventricle evokes kininogen induction in the rat brain. / Brain Res 2003, 978: 72-2. CrossRef
    19. Frick IM, Bjorck L, Herwald H: The dual role of the contact system in bacterial infectious disease. / Thromb Haemost 2007, 98: 497-02.
    20. Stadnicki A, Sartor RB, Janardham R, Stadnicka I, Adam AA, Blais C Jr, Colman RW: Kallikrein-kininogen system activation and bradykinin (B2) receptors in indomethacin induced enterocolitis in genetically susceptible Lewis rats. / Gut 1998, 43: 365-74. CrossRef
    21. De La Cadena RA, Suffredini AF, Page JD, Pixley RA, Kaufman N, Parrillo JE, Colman RW: Activation of the kallikrein-kinin system after endotoxin administration to normal human volunteers. / Blood 1993, 81: 3313-317.
    22. Citarella F, Wuillemin WA, Lubbers YT, Hack CE: Initiation of contact system activation in plasma is dependent on factor XII autoactivation and not on enhanced susceptibility of factor XII for kallikrein cleavage. / Br J Haematol 1997, 99: 197-05. CrossRef
    23. Patrassi GM, Martinelli S, Vianello C, Girolami A: Kallikrein and prekallikrein levels in a large number of congenital clotting deficiencies and abnormalities. / Folia Haematol Int Mag Klin Morphol Blutforsch 1982, 109: 644-54.
    24. Shariat-Madar Z, Mahdi F, Schmaier AH: Identification and characterization of prolylcarboxypeptidase as an endothelial cell prekallikrein activator. / J Biol Chem 2002, 277: 17962-7969. CrossRef
    25. Shariat-Madar Z, Rahimy E, Mahdi F, Schmaier AH: Overexpression of prolylcarboxypeptidase enhances plasma prekallikrein activation on Chinese hamster ovary cells. / Am J Physiol Heart Circ Physiol 2005, 289: H2697-H2703. CrossRef
    26. Takano M, Satoh C, Kunimatsu N, Otani M, Hamada-Kanazawa M, Miyake M, Ming K, Yayama K, Okamoto H: Lipopolysaccharide activates the kallikrein-kinin system in mouse choroid plexus cell line ECPC4. / Neurosci Lett 2008, 434: 310-14. CrossRef
    27. Ananyeva NM, Kouiavskaia DV, Shima M, Saenko EL: Intrinsic pathway of blood coagulation contributes to thrombogenicity of atherosclerotic plaque. / Blood 2002, 99: 4475-485. CrossRef
    28. Colman RW: Regulation of angiogenesis by the kallikrein-kinin system. / Curr Pharm Des 2006, 12: 2599-607. CrossRef
    29. Colman RW: The contact system and angiogenesis: potential for therapeutic control of malignancy. / Semin Thromb Hemost 2004, 30: 45-1. CrossRef
    30. Ehringer WD, Edwards MJ, Gray RD, Miller FN: Bradykinin antagonizes the effects of alpha-thrombin. / Inflammation 1997, 21: 279-98. CrossRef
    31. Ehringer WD, Wang OL, Haq A, Miller FN: Bradykinin and alpha-thrombin increase human umbilical vein endothelial macromolecular permeability by different mechanisms. / Inflammation 2000, 24: 175-93. CrossRef
    32. Wohlfart P, Dedio J, Wirth K, Scholkens BA, Wiemer G: Different B1 kinin receptor expression and pharmacology in endothelial cells of different origins and species. / J Pharmacol Exp Ther 1997, 280: 1109-116.
    33. Bannerman DD, Sathyamoorthy M, Goldblum SE: Bacterial lipopolysaccharide disrupts endothelial monolayer integrity and survival signaling events through caspase cleavage of adherens junction proteins. / J Biol Chem 1998, 273: 35371-5380. CrossRef
    34. Zeerleder S, Schroeder V, Hack CE, Kohler HP, Wuillemin WA: TAFI and PAI-1 levels in human sepsis. / Thromb Res 2006, 118: 205-12. CrossRef
    35. Boveris A, Alvarez S, Navarro A: The role of mitochondrial nitric oxide synthase in inflammation and septic shock. / Free Radic Biol Med 2002, 33: 1186-193. CrossRef
    36. Schiffrin EL: Beyond blood pressure: the endothelium and atherosclerosis progression. / Am J Hypertens 2002, 15: 115S-122S. CrossRef
    37. Brown NJ: Aldosterone and end-organ damage. / Curr Opin Nephrol Hypertens 2005, 14: 235-41. CrossRef
    38. Hattori Y, Akimoto K, Gross SS, Hattori S, Kasai K: Angiotensin-II-induced oxidative stress elicits hypoadiponectinaemia in rats. / Diabetologia 2005, 48: 1066-074. CrossRef
    39. Saijonmaa O, Nyman T, Fyhrquist F: Downregulation of angiotensin-converting enzyme by tumor necrosis factor-alpha and interleukin-1beta in cultured human endothelial cells. / J Vasc Res 2001, 38: 370-78. CrossRef
    40. Saijonmaa O, Nyman T, Kosonen R, Fyhrquist F: Upregulation of angiotensin-converting enzyme by vascular endothelial growth factor. / Am J Physiol Heart Circ Physiol 2001, 280: H885-H891.
    41. Aljada A, Ghanim H, Assian E, Dandona P: Tumor necrosis factor-alpha inhibits insulin-induced increase in endothelial nitric oxide synthase and reduces insulin receptor content and phosphorylation in human aortic endothelial cells. / Metabolism 2002, 51: 487-91. CrossRef
    42. Campbell DJ: The renin-angiotensin and the kallikrein-kinin systems. / Int J Biochem Cell Biol 2003, 35: 784-91. CrossRef
    43. Bengtson SH, Phagoo SB, Norrby-Teglund A, Pahlman L, Morgelin M, Zuraw BL, Leeb-Lundberg LM, Herwald H: Kinin receptor expression during Staphylococcus aureus infection. / Blood 2006, 108: 2055-063. CrossRef
  • 作者单位:My-Linh Ngo (1)
    Fakhri Mahdi (2)
    Dhaval Kolte (1)
    Zia Shariat-Madar (1)

    1. School of Pharmacy, Department of Pharmacology, University of Mississippi, Oxford, MS, USA
    2. School of Pharmacy, Department of Pharmacognosy, University of Mississippi, Oxford, MS, USA
  • ISSN:1476-9255
文摘
Background Prolylcarboxypeptidase (Prcp) gene, along with altered PRCP and kallikrein levels, have been implicated in inflammation pathogenesis. PRCP regulates angiotensin 1- (Ang 1-) -and bradykinin (BK) -stimulated nitric oxide production in endothelial cells. The mechanism through which kallikrein expression is altered during infection is not fully understood. Investigations were performed to determine the association between PRCP and kallikrein levels as a function of the upregulation of PRCP expression and the link between PRCP and inflammation risk in lipopolysaccharide (LPS)-induced endothelium activation. Methods The Prcp transcript expression in LPS-induced human umbilical vein endothelial cells (HUVEC) activation was determined by RT-PCR for mRNA. PRCP-dependent kallikrein pathway was determined either by Enzyme Linked ImmunoSorbent Assay (ELISA) or by biochemical assay. Results We report that PRCP is critical to the maintenance of the endothelial cells, and its upregulation contributes to the risk of developing inflammation. Significant elevation in kallikrein was seen on LPS-treated HUVECs. The conversion of PK to kallikrein was blocked by the inhibitor of PRCP, suggesting that PRCP might be a risk factor for inflammation. Conclusion The increased PRCP lead to a sustained production of bradykinin in endothelium following LPS treatment. This amplification may be an additional mechanism whereby PRCP promotes a sustained inflammatory response. A better appreciation of the role of PRCP in endothelium may contribute to a better understanding of inflammatory vascular disorders and to the development of a novel treatment.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700