Monogenetic volcanoes fed by interconnected dikes and sills in the Hopi Buttes volcanic field, Navajo Nation, USA
详细信息    查看全文
  • 作者:James D. Muirhead ; Alexa R. Van Eaton ; Giuseppe Re…
  • 关键词:Dike ; Saucer ; shaped sill ; Monogenetic volcanic field ; Conduit ; Intrusive complex
  • 刊名:Bulletin of Volcanology
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:78
  • 期:2
  • 全文大小:4,206 KB
  • 参考文献:Abdelmalak MM, Mourgues R, Galland O, Bureau D (2012) Fracture mode analysis and related surface deformation during dyke intrusion: results from 2D experimental modelling. Earth Planet Sci Lett 359:93–105CrossRef
    Airoldi G, Muirhead JD, White JDL, Rowland J (2011) Emplacement of magma at shallow depth: insights from field relationships at Allan Hills, south Victoria Land, East Antarctica. Antarct Sci 23(3):281–296CrossRef
    Airoldi G, Muirhead JD, Zanella E, White JDL (2012) Emplacement process of Ferrar Dolerite sheets at Allan Hills (South Victoria Land, Antarctica) inferred from magnetic fabric. Geophys J Int 188(3):1046–1060CrossRef
    Albert H, Costa F, Martí J (2016) Years to weeks of seismic unrest and magmatic intrusions precede monogenetic eruptions. Geology. doi:10.​1130/​G37239.​1
    Anderson EM (1951) The dynamics of faulting and dyke formation with applications to Britain. Oliver and Boyd, Edinburgh, p 206
    Andrews RG, White JDL, Durig T, Zimanowski B (2014) Discrete blasts in granular material yield two-stage process of cavitation and granular fountaining. Geophys Res Lett 41(2):422–428CrossRef
    Annels A (1967) The geology of the Hornafjordur Region. In: University of London, p 278
    Aoki Y, Takeo M, Ohminato T, Nagaoka Y, Nishida K (2013) Magma pathway and its structural controls of Asama Volcano, Japan. Geol Soc Lond Spec Publ 380:67–84CrossRef
    Biggs J, Chivers M, Hutchinson MC (2013) Surface deformation and stress interactions during the 2007–2010 sequence of earthquake, dyke intrusion and eruption in northern Tanzania. Geophys J Int 195(1):16–26CrossRef
    Billingsley GH, Block D, Redsteer MH (2013) Geologic map of the Winslow 30’ × 60’ quadrangle, Coconino and Navajo counties, Northern Arizona. US Geological Survey Scientific Investigations, Map 3247, pamphlet 25 pp, http://​pubs.​usgs.​gov/​sim/​3247/​
    Bonaccorso A, Currenti G, Del Negro C (2013) Interaction of volcano-tectonic fault with magma storage, intrusion and flank instability: a thirty years study at Mt. Etna Volcano. J Volcanol Geotherm Res 251:127–136CrossRef
    Brown RJ, Valentine GA (2013) Physical characteristics of kimberlite and basaltic intraplate volcanism and implications of a biased kimberlite record. Geol Soc Am Bull 125(7–8):1224–1238CrossRef
    Buck WR, Einarsson P, Brandsdottir B (2006) Tectonic stress and magma chamber size as controls on dike propagation: constraints from the 1975–1984 Krafla rifting episode. Journal of Geophysical Research-Solid Earth 111(B12), DOI: 10.​1029/​2005jb003879
    Burchardt S (2008) New insights into the mechanics of sill emplacement provided by field observations of the Njardvik Sill, Northeast Iceland. J Volcanol Geotherm Res 173(3–4):280–288CrossRef
    Cartwright J, Hansen DM (2006) Magma transport through the crust via interconnected sill complexes. Geology 34(11):929–932CrossRef
    Chadwick WW, Jonsson S, Geist DJ, Poland M, Johnson DJ, Batt S, Harpp KS, Ruiz A (2011) The May 2005 eruption of Fernandina Volcano, Galapagos: the first circumferential dike intrusion observed by GPS and InSAR. Bull Volcanol 73(6):679–697CrossRef
    Chevallier L, Woodford A (1999) Morpho-tectonics and mechanisms of emplacement of the dolerite rings and sills of the western Karoo, South Africa. S Afr J Geol 102:43–54
    Delaney PT, Gartner AE (1997) Physical processes of shallow mafic dike emplacement near the San Rafael Swell, Utah. Geol Soc Am Bull 109(9):1177–1192CrossRef
    Delaney PT, Pollard DD (1981) Deformation of host rocks and flow of magma during growth of minette dikes and breccia-bearing intrusions near Ship Rock, New Mexico. US Geol Surv Prof Pap 1202:61
    Foshag WF, Gonzalez-Reyna J (1956) Birth and development of Paricutin Volcano. US Geol Surv Bull 965-D:355–489
    Francis EH (1982) Magma and sediment—I. Emplacement mechanism of late Carboniferous tholeiite sills in northern Britain. J Geol Soc 139:1–20CrossRef
    Friese N, Bense FA, Tanner DC, Gustafsson LE, Siegesmund S (2013) From feeder dykes to scoria cones: the tectonically controlled plumbing system of the Rauoholar volcanic chain, Northern Volcanic Zone, Iceland. Bull Volcanol 75(6), doi: 10.​1007/​s00445-013-0717-2
    Galland O (2012) Experimental modelling of ground deformation associated with shallow magma intrusions. Earth Planet Sci Lett 317:145–156CrossRef
    Galland O, Scheibert J (2013) Analytical model of surface uplift above axisymmetric flat-lying magma intrusions: implications for sill emplacement and geodesy. J Volcanol Geotherm Res 253:114–130CrossRef
    Galland O, Planke S, Neumann ER, Malthe-Sorenssen A (2009) Experimental modelling of shallow magma emplacement: application to saucer-shaped intrusions. Earth Planet Sci Lett 277(3–4):373–383CrossRef
    Galland O, Burchardt S, Hallot E, Mourgues R, Bulois C (2014) Dynamics of dikes versus cone sheets in volcanic systems. J Geophys Res-Solid Earth 119(8):6178–6192CrossRef
    Goulty NR, Schofield N (2008) Implications of simple flexure theory for the formation of saucer-shaped sills. J Struct Geol 30(7):812–817CrossRef
    Gudmundsson A, Brenner SL (2004) How mechanical layering affects local stresses, unrests, and eruptions of volcanoes. Geophysical Research Letters 31(16), DOI: 10.​1029/​2004gl020083
    Hansen DM, Cartwright J (2006) Saucer-shaped sill with lobate morphology revealed by 3D seismic data: implications for resolving a shallow-level sill emplacement mechanism. J Geol Soc 163:509–523CrossRef
    Hansen J, Jerram DA, McCaffrey K, Passey SR (2011) Early Cenozoic saucer-shaped sills of the Faroe Islands: an example of intrusive styles in basaltic lava piles. J Geol Soc 168:159–178CrossRef
    Harp AG, Valentine GA (2015) Shallow plumbing and eruptive processes of a scoria cone built on steep terrain. J Volcanol Geotherm Res 294:37–55CrossRef
    Hoek JD (1991) A classification of dyke-fracture geometry with examples from Precambrian dyke swarms in the Vestfold Hills, Antarctica. Geologische Rundscau 80:233–248CrossRef
    Hooten JA, Ort MH (2002) Peperite as a record of early-stage phreatomagmatic fragmentation processes: an example from the Hopi Buttes volcanic field, Navajo Nation, Arizona, USA. J Volcanol Geotherm Res 114(1–2):95–106CrossRef
    Houghton BF, Wilson CJN, Smith IEM (1999) Shallow-seated controls on styles of explosive basaltic volcanism: a case study from New Zealand. J Volcanol Geotherm Res 91(1):97–120CrossRef
    Johnson AM, Pollard DD (1973) Mechanics of growth of some laccolith intrusions in Henry Moutnains, Utah 1: field observations, Gilbert’s model, physical properties and flow of magma. Tectonophysics 18(3–4):261–309CrossRef
    Kattenhorn SA, Watkeys MK (1995) Blunt-ended dyke segments. J Struct Geol 17:1532–1542CrossRef
    Kavanagh JL, Menand T, Sparks RSJ (2006) An experimental investigation of sill formation and propagation in layered elastic media. Earth Planet Sci Lett 245(3–4):799–813CrossRef
    Kavanagh JL, Boutelier D, Cruden AR (2015) The mechanics of sill inception, propagation and growth: experimental evidence for rapid reduction in magmatic overpressure. Earth Planet Sci Lett 421:117–128CrossRef
    Keating GN, Valentine GA, Krier DJ, Perry FV (2008) Shallow plumbing systems for small-volume basaltic volcanoes. Bull Volcanol 70(5):563–582CrossRef
    Kereszturi G, Németh K (2012) Monogenetic basaltic volcanoes: genetic classification, growth, geomorphology and degradation. In: Németh K (ed) Updates in volcanology—new advances in understanding volcanic systems. InTech, Rijeka, pp 3–89
    Kiyosugi K, Connor CB, Wetmore PH, Ferwerda BP, Germa AM, Connor LJ, Hintz AR (2012) Relationship between dike and volcanic conduit distribution in a highly eroded monogenetic volcanic field: San Rafael, Utah, USA. Geology 40(8):695–698CrossRef
    Klausen MB (2004) Geometry and mode of emplacement of the Thverartindur cone sheet swarm, SE Iceland. J Volcanol Geotherm Res 138(3–4):185–204CrossRef
    Le Corvec N, Spörli BK, Rowland JV, Lindsay J (2013) Spatial distribution and alignments of volcanic centers: clues to the formation of monogenetic volcanic fields. Earth-Sci Rev 124:96–114CrossRef
    Lefebvre NS (2013) Volcanology of maar-diatreme volcanic vent complexes, Hopi Buttes Volcanic Field, Navajo Nation, Arizona, USA. PhD thesis, University of Otago, Dunedin, p 269
    Lefebvre NS, White JDL, Kjarsgaard BA (2012) Spatter-dike reveals subterranean magma diversions: consequences for small multivent basaltic eruptions. Geology 40(5):423–426CrossRef
    Lefebvre NS, White JDL, Kjarsgaardb BA (2016) Arrested diatreme development: Standing Rocks East, Hopi Buttes, Navajo Nation, USA. J Volcanol Geotherm Res 310:186–208. doi:10.​1016/​j.​jvolgeores.​2015.​12.​007 CrossRef
    Magee C, Briggs F, Jackson CAL (2013a) Lithological controls on igneous intrusion-induced ground deformation. J Geol Soc 170(6):853–856CrossRef
    Magee C, Hunt-Stewart E, Jackson CAL (2013b) Volcano growth mechanisms and the role of sub-volcanic intrusions: insights from 2D seismic reflection data. Earth Planet Sci Lett 373:41–53CrossRef
    Magee C, Jackson CA-L, Schofield N (2014) Diachronous sub-volcanic intrusion along deep-water margins: insights from the Irish Rockall Basin. Basin Res 26:85–105CrossRef
    Malthe-Sørensson A, Planke S, Svensen H, Jamtveit B (2004) Formation of saucer-shaped sills. In: Breitkreuz C, Petford N (eds) Physical geology of high-level magmatic systems. Geological Society [London] Special Publication, pp 215–227
    Marshak S, Karlstrom K, Timmons JM (2000) Inversion of Proterozoic extensional faults: an explanation for the pattern of Laramide and Ancestral Rockies intracratonic deformation, United States. Geology 28(8):735–738CrossRef
    Mastin LG, Christiansen RL, Thornber C, Lowenstern J, Beeson M (2004) What makes hydromagmatic eruptions violent? Some insights from the Keanakako’i Ash, Kilauea Volcano, Hawai’i. J Volcanol Geotherm Res 137(1–3):15–31CrossRef
    Mathieu L, de Vries BV, Holohan EP, Troll VR (2008) Dykes, cups, saucers and sills: analogue experiments on magma intrusion into brittle rocks. Earth Planet Sci Lett 271(1–4):1–13CrossRef
    Mathieu L, Burchardt S, Troll VR, Krumbholz M, Delcamp A (2015) Geological constraints on the dynamic emplacement of cone-sheets—the Ardnamurchan cone-sheet swarm, NW Scotland. J Struct Geol 80:133–141CrossRef
    McGee LE, Millet MA, Smith IEM, Nemeth K, Lindsay JM (2012) The inception and progression of melting in a monogenetic eruption: Motukorea Volcano, the Auckland Volcanic Field, New Zealand. Lithos 155:360–374CrossRef
    Mourgues R, Bureau D, Bodet L, Gay A, Gressier JB (2012) Formation of conical fractures in sedimentary basins: experiments involving pore fluids and implications for sandstone intrusion mechanisms. Earth Planet Sci Lett 313:67–78CrossRef
    Muirhead JD, Airoldi G, Rowland JV, White JDL (2012) Interconnected sills and inclined sheet intrusions control shallow magma transport in the Ferrar large igneous province, Antarctica. Geol Soc Am Bull 124(1–2):162–180CrossRef
    Muirhead JD, Airoldi G, White JDL, Rowland JV (2014) Cracking the lid: sill-fed dikes are the likely feeders of flood basalt eruptions. Earth Planet Sci Lett 406:187–197CrossRef
    Muirhead JD, Kattenhorn SA, Le Corvec N (2015) Varying styles of magmatic strain accommodation in the East African Rift. Geochemistry, Geophysics, Geosystems 16, DOI: 10.​1002/​2015GC005918
    Nemeth K, Martin U (2007) Shallow sill and dyke complex in western Hungary as a possible feeding system of phreatomagmatic volcanoes in “soft-rock” environment. J Volcanol Geotherm Res 159(1–3):138–152CrossRef
    Ort MH, Carrasco-Nunez G (2009) Lateral vent migration during phreatomagmatic and magmatic eruptions at Tecuitlapa Maar, east-central Mexico. J Volcanol Geotherm Res 181(1–2):67–77CrossRef
    Pasquarè F, Tibaldi A (2007) Structure of a sheet-laccolith system revealing the interplay between tectonic and magma stresses at Stardalur Volcano, Iceland. J Volcanol Geotherm Res 161(1–2):131–150CrossRef
    Paulsen TS, Wilson TJ (2010) New criteria for systematic mapping and reliability assessment of monogenetic volcanic vent alignments and elongate volcanic vents for crustal stress analyses. Tectonophysics 482(1–4):16–28CrossRef
    Pollard DD, Muller OH, Dockstader DR (1975) The form and growth of fingered sheet intrusions. Geol Soc Am Bull 86:351–363CrossRef
    Polteau S, Ferre EC, Planke S, Neumann ER, Chevallier L (2008) How are saucer-shaped sills emplaced? Constraints from the Golden Valley Sill, South Africa. Journal of Geophysical Research-Solid Earth 113(B12), DOI: 10.​1029/​2008jb005620
    Re G, White JDL, Ort MH (2015) Dikes, sills, and stress-regime evolution during emplacement of the Jagged Rocks Complex, Hopi Buttes Volcanic Field, Navajo Nation, USA. J Volcanol Geotherm Res 295:65–79CrossRef
    Reches Z, Fink J (1988) The mechanisms of intrusion of the Inyo Dike, Long Valley Caldera, California. J Geophys Res Solid Earth Planets 93(B5):4321–4334CrossRef
    Richardson JA, Connor CB, Wetmore PH, Connor LJ, Gallant EA (2015) Role of sills in the development of volcanic fields: insights from lidar mapping surveys of the San Rafael Swell, Utah. Geology 43:1023–1026CrossRef
    Rivalta E, Taisne B, Bunger AP, Katz RF (2015) A review of mechanical models of dike propagation: Schools of thought, results and future directions. Tectonophysics 638:1–42
    Ross PS, White JDL (2006) Debris jets in continental phreatomagmatic volcanoes: a field study of their subterranean deposits in the Coombs Hills vent complex, Antarctica. J Volcanol Geotherm Res 149(1–2):62–84CrossRef
    Ross PS, White JDL (2012) Quantification of vesicle characteristics in some diatreme-filling deposits, and the explosivity levels of magma-water interactions within diatremes. J Volcanol Geotherm Res 245:55–67CrossRef
    Rotella MD, Wilson CJN, Barker SJ, Cashman KV, Houghton BF, Wright IC (2014) Bubble development in explosive silicic eruptions: insights from pyroclast vesicularity textures from Raoul volcano (Kermadec arc). Bull Volcanol 76(8), doi: 10.​1007/​s00445-014-0826-6
    Rubin AM (1995) Propagation of magma-filled cracks. Annu Rev Earth Planet Sci 23:287–336CrossRef
    Schofield N, Stevenson C, Reston T (2010) Magma fingers and host rock fluidization in the emplacement of sills. Geology 38(1):63–66CrossRef
    Schofield N, Heaton L, Holford SP, Archer SG, Jackson CAL, Jolley DW (2012a) Seismic imaging of ‘broken bridges’: linking seismic to outcrop-scale investigations of intrusive magma lobes. J Geol Soc 169(4):421–426CrossRef
    Schofield NJ, Brown DJ, Magee C, Stevenson CT (2012b) Sill morphology and comparison of brittle and non
    ittle emplacement mechanisms. J Geol Soc 169(2):127–141CrossRef
    Segall P (2013) Volcano deformation and eruption forecasting. Remote Sens Volcanoes Volcanic Processes: Integrating Observation and Modelling 380:85–106
    Sigmundsson F, Hooper A, Hreinsdottir S, Vogfjord KS, Ofeigsson BG, Heimisson ER, Dumont S, Parks M, Spaans K, Gudmundsson GB, Drouin V, Arnadottir T, Jonsdottir K, Gudmundsson MT, Hognadottir T, Fridriksdottir HM, Hensch M, Einarsson P, Magnusson E, Samsonov S, Brandsdottir B, White RS, Agustsdottir T, Greenfield T, Green RG, Hjartardottir AR, Pedersen R, Bennett RA, Geirsson H, La Femina PC, Bjornsson H, Palsson F, Sturkell E, Bean CJ, Mollhoff M, Braiden AK, Eibl EPS (2015) Segmented lateral dyke growth in a rifting event at Bardarbunga volcanic system, Iceland. Nature 517(7533):191–195CrossRef
    Skilling IP, White JDL, McPhie J (2002) Peperite: a review of magma-sediment mingling. J Volcanol Geotherm Res 114(1–2):1–17CrossRef
    Sparks RSJ (1978) The dynamics of bubble formation and growth in magmas: a review and analysis. J Volcanol Geotherm Res 3:1–37CrossRef
    Sparks RSJ, Biggs J, Neuberg JW (2012) Monitoring Volcanoes. Science 335(6074):1310–1311CrossRef
    Thomson K (2007) Determining magma flow in sills, dykes and laccoliths and their implications for sill emplacement. Bull Volcanol 70:183–201CrossRef
    Thomson K, Hutton D (2004) Geometry and growth of sill complexes: insights using 3D seismic from the North Rockall Trough. Bull Volcanol 66:364–375CrossRef
    Thomson K, Schofield N (2008) Lithological and structural controls on the emplacement and morphology of sills in sedimentary basins. In: Thomson K, Petford N (eds) Structure and emplacement of high-level magmatic systems. Geological Society [London] Special Publications 302, pp 31–44
    Valentine GA, Krogh, KEC (2006) Emplacement of shallow dikes and sills beneath a small basaltic volcanic center – The role of pre-existing structure (Paiute Ridge, southern Nevada, USA). Earth Planet Sci Lett 246:217–230
    Valentine GA, Cortés JA (2013) Time and space variations in magmatic and phreatomagmatic eruptive processes at Easy Chair (Lunar Crater Volcanic Field, Nevada, USA). Bull Volcanol 75(9). doi: 10.​1007/​s00445-013-0752-z
    Wadge G, Burt L (2011) Stress field control of eruption dynamics at a rift volcano: Nyamuragira, DR Congo. J Volcanol Geotherm Res 207(1–2):1–15CrossRef
    Walker RJ (2016) Controls on transgressive sill growth. Geology. doi:10.​1130/​G37144.​1
    White JDL (1990) Depositional architecture of a maar-pitted playa—sedimentation in the Hopi Buttes volcanic field, northeastern Arizona, USA. Sediment Geol 67(1–2):55–84CrossRef
    White JDL (1991) Maar-diatreme phreatomagmatism at Hopi Buttes, Navajo Nation (Arizona), USA. Bull Volcanol 53(4):239–258CrossRef
    White JDL (1992) Pliocene subaqueous fans and gilbert-type deltas in maar crater lakes, Hopi Buttes, Navajo Nation (Arizona), USA. Sedimentology 39(5):931–946CrossRef
    White JDL, Ross PS (2011) Maar-diatreme volcanoes: a review. J Volcanol Geotherm Res 201(1–4):1–29CrossRef
    Wood CA (1980) Morphometric evolution of cinder cones. J Volcanol Geotherm Res 7(3–4):387–413CrossRef
    Wright TJ, Sigmundsson F, Pagli C, Belachew M, Hamling IJ, Brandsdottir B, Keir D, Pedersen R, Ayele A, Ebinger C, Einarsson P, Lewi E, Calais E (2012) Geophysical constraints on the dynamics of spreading centres from rifting episodes on land. Nat Geosci 5(4):242–250CrossRef
  • 作者单位:James D. Muirhead (1)
    Alexa R. Van Eaton (2) (3)
    Giuseppe Re (4)
    James D. L. White (4)
    Michael H. Ort (5)

    1. Department of Geological Sciences, University of Idaho, Moscow, ID, 83844, USA
    2. U.S. Geological Survey, Cascades Volcano Observatory, Vancouver, WA, 98683, USA
    3. School of Earth and Space Exploration, Arizona State University, Tempe, AZ, 85287, USA
    4. Geology Department, University of Otago, Dunedin, 9054, New Zealand
    5. SESES, Northern Arizona University, Flagstaff, AZ, 86011, USA
  • 刊物主题:Geology; Geophysics/Geodesy; Mineralogy; Sedimentology;
  • 出版者:Springer Berlin Heidelberg
  • ISSN:1432-0819
文摘
Although monogenetic volcanic fields pose hazards to major cities worldwide, their shallow magma feeders (<500 m depth) are rarely exposed and, therefore, poorly understood. Here, we investigate exposures of dikes and sills in the Hopi Buttes volcanic field, Arizona, to shed light on the nature of its magma feeder system. Shallow exposures reveal a transition zone between intrusion and eruption within 350 m of the syn-eruptive surface. Using a combination of field- and satellite-based observations, we have identified three types of shallow magma systems: (1) dike-dominated, (2) sill-dominated, and (3) interconnected dike-sill networks. Analysis of vent alignments using the pyroclastic massifs and other eruptive centers (e.g., maar-diatremes) shows a NW-SE trend, parallel to that of dikes in the region. We therefore infer that dikes fed many of the eruptions. Dikes are also observed in places transforming to transgressive (ramping) sills. Estimates of the observable volume of dikes (maximum volume of 1.90 × 106 m3) and sills (minimum volume of 8.47 × 105 m3) in this study reveal that sills at Hopi Buttes make up at least 30 % of the shallow intruded volume (∼2.75 × 106 m3 total) within 350 m of the paeosurface. We have also identified saucer-shaped sills, which are not traditionally associated with monogenetic volcanic fields. Our study demonstrates that shallow feeders in monogenetic fields can form geometrically complex networks, particularly those intruding poorly consolidated sedimentary rocks. We conclude that the Hopi Buttes eruptions were primarily fed by NW-SE-striking dikes. However, saucer-shaped sills also played an important role in modulating eruptions by transporting magma toward and away from eruptive conduits. Sill development could have been accompanied by surface uplifts on the order of decimeters. We infer that the characteristic feeder systems described here for the Hopi Buttes may underlie monogenetic fields elsewhere, particularly where magma intersects shallow, and often weak, sedimentary rocks. Results from this study support growing evidence of the important role of shallow sills in active monogenetic fields. Keywords Dike Saucer-shaped sill Monogenetic volcanic field Conduit Intrusive complex

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700