Numerical simulation and experimental validation for a novel dielectrophoresis activated cell sorter to achieve high throughput and efficiency
详细信息    查看全文
  • 作者:Bohyun Hwang ; Dongkyu Lee ; Byungkyu Kim…
  • 刊名:Journal of Mechanical Science and Technology
  • 出版年:2016
  • 出版时间:August 2016
  • 年:2016
  • 卷:30
  • 期:8
  • 页码:3749-3755
  • 全文大小:2,785 KB
  • 刊物类别:Engineering
  • 刊物主题:Mechanical Engineering
    Structural Mechanics
    Control Engineering
    Industrial and Production Engineering
  • 出版者:The Korean Society of Mechanical Engineers
  • ISSN:1976-3824
  • 卷排序:30
文摘
Although previously developed Dielectrophoresis activated cell sorters (DACSes) have achieved high separation efficiency, limitations still exist with respect to the low throughput. In this paper, therefore, a numerical analysis is presented for a novel DACS to achieve not only high efficiency but also high throughput. Additionally, experimental validation is performed based on the results of a numerical simulation. First, streamlines in the channel are investigated according to various flow rate ratios in each outlet. After cells are deflected by a sufficient amount of dielectrophoretic force, they arrive at the tip of the last electrode pair. Their movement is then determined by hydrodynamic force. Therefore, it is important to confirm whether or not the streamline at the tip of the last electrode pair connects to the target area. Based on the streamline analysis results, the particle trajectory under various AC electric fields is investigated using a three-dimensional analysis. Accordingly, an input voltage condition (7 Vp-p at 10 kHz) is selected to confirm the influence of dielectrophoretic force. Conclusively, optimal flow rates under the determined input voltage condition are selected as 10 μl/min and 20 μl/min in outlet A (target area) and outlet B (non-target area), respectively. In order to validate the feasibility of the selected flow rates, a separation test is performed employing a K562 cell–bone marrow cancer cell–as a target cell. In the experiment, the proposed DACS achieves a high throughput of 45000 cells/min as well as a separation efficiency of 96.5% and recovery rate of 47.25%.KeywordsDielectrophoresisDielectrophoresis activated cell sorter (DACS)Separation efficiencyThroughputNumerical analysis

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700