High-capacity embedding of synfire chains in a cortical network model
详细信息    查看全文
  • 作者:Chris Trengove (1) (2) (3) (4)
    Cees van Leeuwen (2) (4)
    Markus Diesmann (3) (5)
  • 关键词:Recurrent network dynamics ; Feedforward network ; Synchrony ; Synaptic conductance ; Synfire chain ; Storage capacity
  • 刊名:Journal of Computational Neuroscience
  • 出版年:2013
  • 出版时间:April 2013
  • 年:2013
  • 卷:34
  • 期:2
  • 页码:185-209
  • 全文大小:2684KB
  • 参考文献:1. Abeles, M. (1982). / Local cortical circuits: An electrophysiological study. Studies of Brain Function. Berlin, Heidelberg, New York: Springer-Verlag. CrossRef
    2. Abeles, M. (1991). / Corticonics: Neural circuits of the cerebral cortex (1st ed.). Cambridge: Cambridge University Press. CrossRef
    3. Abeles, M., Hayon, G., Lehmann, D. (2004). Modeling compositionality by dynamic binding of synfire chains. / Journal of Computational Neuroscience, 17(2), 179鈥?01. CrossRef
    4. Amit, D.J., & Brunel, N. (1997). Model of global spontaneous activity and local structured activity during delay periods in the cerebral cortex. / Cerebral Cortex, 7, 237鈥?52. CrossRef
    5. Aviel, Y., Horn, D., Abeles, M. (2005). Memory capacity of balanced networks. / Neural Computation, 17(3), 691鈥?13. Comparative Study. CrossRef
    6. Bienenstock, E. (1991). Notes on the growth of a 鈥渃omposition machine鈥? In D. Andler, E. Bienenstock, B. Laks (Eds.), / Proceedings of the royaumont interdisciplinary workshop on compositionality in cognition and neural models (pp.聽1鈥?9). Abbaye de Royaumont, Asniere s. Oise (Fr).
    7. Bienenstock, E. (1995). A model of neocortex. / Network: Computation in Neural Systems, 6, 179鈥?24. CrossRef
    8. Bienenstock, E. (1996). Composition. In A. Aertsen, & V. Braitenberg (Eds.), / Brain theory 鈥?biological basis and computational principles (pp.聽269鈥?00). Amsterdam, Elsevier.
    9. Bringuier, V., Chavane, F., Glaeser, L., Fr茅gnac, Y. (1999). Horizontal propagation of visual activity in the synaptic integration field of area 17 neurons. / Science, 283(5402), 695鈥?99. CrossRef
    10. Brunel, N. (2000). Dynamics of sparsely connected networks of excitatory and inhibitory spiking neurons. / Journal of Computational Neuroscience, 8(3), 183鈥?08. CrossRef
    11. Burkitt, A.N. (2006). A review on the integrate-and-fire neuron model: I. homogenous synaptic input. / Biological Cybernetics, 95(1), 1鈥?9. CrossRef
    12. Burkitt, A.N., Meffin, H., Grayden, D.B. (2003). Study of neuronal gain in a conductance-based leaky integrate-and-fire neuron model with balanced excitatory and inhibitory synaptic input. / Biological Cybernetics, 89, 119鈥?25. CrossRef
    13. Denker, M., Timme, M., Diesmann, M., Wolf, F., Geisel, T. (2004). Breaking synchrony by heterogeneity in complex networks. / Physical Review Letters, 92(7), 074103鈥?鈥?74103鈥?. CrossRef
    14. Destexhe, A., & Par茅, D. (1999). Impact of network activity on the integrative properties of neocortical pyramidal neurons / in vivo. / Journal of Neurophysiology, 81(4), 1531鈥?547.
    15. Diesmann, M., Gewaltig, M.-O., Aertsen, A. (1999). Stable propagation of synchronous spiking in cortical neural networks. / Nature, 402(6761), 529鈥?33. CrossRef
    16. Doursat, R., & Bienenstock, E. (2006a). Neocortical self-structuration as a basis for learning. In / 5th International Conference on Development and Learning (ICDL 2006), Bloomington, Indiana. Indiana University.
    17. Doursat, R., & Bienenstock, E. (2006b). The self-organized growth of synfire patterns. In / 10th International Conference on Cognitive and Neural Systems (ICCNS), Massachusetts. Boston University.
    18. Fiete, I.R., Senn, W., Wang, C.Z.H., Hahnloser, R.H.R. (2010). Spike-time-dependent plasticity and heterosynaptic competition organize networks to produce long scale-free sequences of neural activity. / Neuron, 65, 563鈥?76. CrossRef
    19. F枚ldi谩k, P. (2002). Sparse coding in the primate cortex. In M.A. Arbib (Ed.), / The handbook of brain theory and neural networks, 2nd edn (pp.聽1064鈥?068). Cambridge, MA: MIT Press.
    20. Funahashi, S., & Inoue, M. (2000). Neuronal interactions related to working memory processes in the primate prefontal cortex revealed by cross-correlation analysis. / Cerebral Cortex, 10(6), 535鈥?51. CrossRef
    21. Gerstein, G.L., Williams, E.R., Diesmann, M., Gr眉n, S., Trengove, C. (2012). Detecting synfire chains in parallel spike data. / Journal of Neuroscience Methods, 206(1), 56鈥?4.
    22. Goedeke, S., & Diesmann, M. (2008). The mechanism of synchronization in feed-forward neuronal networks. / New Journal of Physics, 10, 015007. CrossRef
    23. Gonz谩lez-Burgos, G., Barrionuevo, G., Lewis, D.A. (2000). Horizontal synaptic connections in monkey prefrontal cortex: an / in vitro electrophysiological study. / Cerebral Cortex, 10(1), 82鈥?2. CrossRef
    24. Hanuschkin, A., Herrmann, J.M., Morrison, A., Diesmann, M. (2010). Compositionality of arm movements can be realized by propagating synchrony. / Journal of Computational Neuroscience. doi:10.1007/s10827-010-0285-9 .
    25. Hayon, G., Abeles, M., Lehmann, D. (2005). A model for representing the dynamics of a system of synfire chains. / Journal of Computational Neuroscience, 18, 41鈥?3. CrossRef
    26. Herrmann, M., Hertz, J.A., Pr眉gel-Bennett, A. (1995). Analysis of synfire chains. / Network: Computation in Neural Systems, 6, 403鈥?14. CrossRef
    27. Isomura, Y., Harukuni, R., Takekawa, T., Aizawa, H., Fukai, T. (2009). Microcircuitry coordination of cortical motor information in self-initiation of voluntary movements. / Nature Neuroscience, 12, 1586鈥?593. CrossRef
    28. Izhikevich, E.M. (2006). Polychronization: computation with spikes. / Neural Computation, 18, 245鈥?82. CrossRef
    29. Jun, J.K., & Jin, D.Z. (2007). Development of neural circuitry for precise temporal sequences through spontaneous activity, axon remodeling, and synaptic plasticity. / PLoS ONE, 2(8), e723. CrossRef
    30. Kilavik, B.E., Roux, S., Ponce-Alvarez, A., Confais, J., Gruen, S., Riehle, A. (2009). Long-term modifications in motor cortical dynamics induced by intensive practice. / Journal of Neuroscience, 29, 12653鈥?2663. CrossRef
    31. Kumar, A., Rotter, S., Aertsen, A. (2008). Conditions for propagating synchronous spiking and asynchronous firing rates in a cortical network model. / Journal of Neuroscience, 28(20), 5268鈥?280. CrossRef
    32. Kunkel, S., Diesmann, M., Morrison, A. (2011). Limits to the development of feed-forward structures in large recurrent neuronal networks. / Frontiers in Computational Neuroscience, 4. doi:10.3389/fncom.2010.00160 .
    33. London, M., Roth, A., Beeren, L., H盲usser, M., Latham, P.E. (2010). Sensitivity to perturbations / in vivo implies high noise and suggests rate coding in cortex. / Nature, 466(1), 123鈥?28. doi:10.1038/nature09086 . CrossRef
    34. Long, M.A., Jin, D.Z., Fee, M.S. (2010). Support for a synaptic chain model of neuronal sequence generation. / Nature, 468, 394鈥?99. CrossRef
    35. Meffin, H., Burkitt, A.N., Grayden, D.B. (2004). An analytical model for the large, fluctuating synaptic conductance state typical of neocortical neurons / in vivo. / Journal of Computational Neuroscience, 16, 159鈥?75. CrossRef
    36. Mehring, C., Hehl, U., Kubo, M., Diesmann, M., Aertsen, A. (2003). Activity dynamics and propagation of synchronous spiking in locally connected random networks. / Biological Cybernetics, 88(5), 395鈥?08. CrossRef
    37. Mizuseki, K., Sirota, A., Pastalkova, E., Buzsaki, G. (2009). Theta oscillations provide temporal windows for local circuit computation in the entorhinal-hippocampal loop. / Neuron, 64, 267鈥?80. CrossRef
    38. Morrison, A., Mehring, C., Geisel, T., Aertsen, A., Diesmann, M. (2005). Advancing the boundaries of high connectivity network simulation with distributed computing. / Neural Computation, 17(8), 1776鈥?801. CrossRef
    39. Prut, Y., Vaadia, E., Bergman, H., Haalman, I., Hamutal, S., Abeles, M. (1998). Spatiotemporal structure of cortical activity: properties and behavioral relevance. / Journal of Neurophysiology, 79(6), 2857鈥?874.
    40. Ricciardi, L.M. (1977). / Diffusion processes and related topics on biology. Berlin: Springer-Verlag. CrossRef
    41. Richardson, M.J.E. (2004). Effects of synaptic conductance on the voltage distribution and firing rate of spiking neurons. / Physical Review E, 69, 051918. CrossRef
    42. Riehle, A., Gr眉n, S., Diesmann, M., Aertsen, A. (1997). Spike synchronization and rate modulation differentially involved in motor cortical function. / Science, 278, 1950鈥?953. CrossRef
    43. Schrader, S., Diesmann, M., Morrison, A. (2010). A compositionality machine realized by a hierarchic architecture of synfire chains. / Frontiers in Computational Neuroscience, 4, 154. doi:10.3389/fncom.2010.00154 .
    44. Schrader, S., Gr眉n, S., Diesmann, M., Gerstein, G. (2008). Detecting synfire chain activity using massively parallel spike train recording. / Journal of Neurophysiology, 100, 2165鈥?176. CrossRef
    45. Shmiel, T., Drori, R., Shmiel, O., Ben-Shaul, Y., Nadasdy, Z., Shemesh, M., et al. (2005). Neurons of the cerebral cortex exhibit precise interspike timing in correspondence to behavior. / Proceedings of the National Academy of Sciences of the United States of America, 102(51), 18655鈥?8657. CrossRef
    46. Swadlow, H.A. (2000). Information flow alng neocortical axons. In R. Miller (Ed.), / Time and the brain (pp.聽131鈥?55). Amsterdam: Harwood Academic Publishers. CrossRef
    47. Tetzlaff, T., Helias, M., Einevoll, G., Diesmann, M. (2012). Decorrelation of neural-network activity by inhibitory feedback. / PloS Computational Biology, 8(7), e1002596. doi:10.1371/journal.pcbi.1002596
    48. Tetzlaff, T., Morrison, A., Geisel, T., Diesmann, M. (2004). Consequences of realistic network size on the stability of embedded synfire chains. / Neurocomputing, 58鈥?0, 117鈥?21. CrossRef
    49. Tetzlaff, T., Morrison, A., Timme, M., Diesmann, M. (2005). Heterogeneity breaks global synchrony in large networks. In / Proceedings of the 30th G枚ttingen neurobiology conference.
    50. Trengove, C. (2006). / Synf ire structures and cognition: a complex system pespective. Ph D. thesis, University of Technology, Sydney.
    51. Tsodyks, M., & Feigelman, M. (1988). Enhanced storage capacity in neural networks with low level of activity. / Europhysics Letters, 6(2), 101鈥?05. CrossRef
    52. van Vreeswijk, C., & Sompolinsky, H. (1996). Chaos in neuronal networks with balanced excitatory and inhibitory activity. / Science, 274, 1724鈥?726. CrossRef
    53. Waddington, A., Appleby, P.A., de聽Kamps, M., Cohen, N. (2011). Emergence of synfire chains with triphasic spike-time-dependent plasticity. / BMC Neuroscience, 12(Suppl 1), P41.
    54. Yger, P., El聽Boustani, S., Destexhe, A., Fr茅gnac, Y. (2011). Topologically invariant macroscopic statistics in balanced networks of conductance-based integrate-and-fire neurons. / Journal of Computational Neuroscience, 31, 229鈥?45. CrossRef
  • 作者单位:Chris Trengove (1) (2) (3) (4)
    Cees van Leeuwen (2) (4)
    Markus Diesmann (3) (5)

    1. Integrated Simulation of Living Matter Group, RIKEN, Computational Science Research Program, Wako, Saitama, Japan
    2. Laboratory for Perceptual Dynamics, RIKEN, Brain Science Institute, Wako, Saitama, Japan
    3. Laboratory for Computational Neurophysics, RIKEN, Brain Science Institute, Wako, Saitama, Japan
    4. Perceptual Dynamics Laboratory, University of Leuven, Tiensestraat 102, 3000, Leuven, Belgium
    5. Institute of Neuroscience and Medicine, Computational and Systems Neuroscience (INM-6), Research Center Juelich, Juelich, Germany
  • ISSN:1573-6873
文摘
Synfire chains, sequences of pools linked by feedforward connections, support the propagation of precisely timed spike sequences, or synfire waves. An important question remains, how synfire chains can efficiently be embedded in cortical architecture. We present a model of synfire chain embedding in a cortical scale recurrent network using conductance-based synapses, balanced chains, and variable transmission delays. The network attains substantially higher embedding capacities than previous spiking neuron models and allows all its connections to be used for embedding. The number of waves in the model is regulated by recurrent background noise. We computationally explore the embedding capacity limit, and use a mean field analysis to describe the equilibrium state. Simulations confirm the mean field analysis over broad ranges of pool sizes and connectivity levels; the number of pools embedded in the system trades off against the firing rate and the number of waves. An optimal inhibition level balances the conflicting requirements of stable synfire propagation and limited response to background noise. A simplified analysis shows that the present conductance-based synapses achieve higher contrast between the responses to synfire input and background noise compared to current-based synapses, while regulation of wave numbers is traced to the use of variable transmission delays.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700