The impact of low-protein high-carbohydrate diets on aging and lifespan
详细信息    查看全文
  • 作者:David G. Le Couteur ; Samantha Solon-Biet…
  • 关键词:Aging ; Ageing ; Caloric restriction ; Geometric Framework ; CPC diet ; Dietary protein ; Dietary carbohydrate
  • 刊名:Cellular and Molecular Life Sciences (CMLS)
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:73
  • 期:6
  • 页码:1237-1252
  • 全文大小:971 KB
  • 参考文献:1.Schafer D (2005) Aging, longevity, and diet: historical remarks on calorie intake reduction. Gerontology 51:126–130PubMed CrossRef
    2.Howell TH (1987) The art of living long by Luigi Cornaro. Age Ageing 16:194–195PubMed CrossRef
    3.McCay C, Crowell M, Maynard L (1935) The effect of retarded growth upon the length of life and upon ultimate size. J Nutr 10:63–79
    4.Mercken EM, Carboneau BA, Krzysik-Walker SM, de Cabo R (2012) Of mice and men: the benefits of caloric restriction, exercise, and mimetics. Ageing Res Rev 11:390–398PubMedCentral PubMed CrossRef
    5.Everitt AV, Rattan SI, Le Couteur DG, de Cabo R (2010) Calorie restriction, aging and longevity. Springer Press, New YorkCrossRef
    6.de Cabo R, Le Couteur DG (2015) The biology of ageing. In: Kasper DL, Fauci AS, Hauser SL, Longo DL, Jameson JL, Loscalzo J (eds) Harrisons principles of internal medicine, 19th edn. McGraw Hill Education, New York, p 94e
    7.Masoro EJ (2005) Overview of caloric restriction and ageing. Mech Ageing Dev 126:913–922PubMed CrossRef
    8.Fontana L, Partridge L, Longo VD (2010) Extending healthy life span—from yeast to humans. Science 328:321–326PubMedCentral PubMed CrossRef
    9.Rizza W, Veronese N, Fontana L (2014) What are the roles of calorie restriction and diet quality in promoting healthy longevity? Ageing Res Rev 13:38–45PubMed CrossRef
    10.Ravussin E, Redman LM, Rochon J, Das SK, Fontana L, Kraus WE, Romashkan S, Williamson DA, Meydani SN, Villareal DT, Smith SR, Stein RI, Scott TM, Stewart TM, Saltzman E, Klein S, Bhapkar M, Martin CK, Gilhooly CH, Holloszy JO, Hadley EC, Roberts SB, Group CS (2015) A 2-year randomized controlled trial of human caloric restriction: feasibility and effects on predictors of health span and longevity. J Gerontol A Biol Sci Med Sci 70:1097–1104
    11.Guarente L, Picard F (2005) Calorie restriction—the SIR2 connection. Cell 120:473–482PubMed CrossRef
    12.Solon-Biet SM, Mitchell SJ, de Cabo R, Raubenheimer D, Le Couteur DG, Simpson SJ (2015) Macronutrients and caloric intake in health and longevity. J Endocrinol 226:R17–R28PubMedCentral PubMed
    13.Le Couteur DG, McLachlan AJ, Quinn RJ, Simpson SJ, de Cabo R (2012) Aging biology and novel targets for drug discovery. J Gerontol A Biol Sci Med Sci 67:169–174
    14.Simpson SJ, Le Couteur DG, Raubenheimer D (2015) Putting the balance back in diet. Cell 161:18–23PubMed CrossRef
    15.Minor RK, Allard JS, Younts CM, Ward TM, de Cabo R (2010) Dietary interventions to extend life span and health span based on calorie restriction. J Gerontol A Biol Sci Med Sci 65:695–703PubMed CrossRef
    16.Simpson SJ, Raubenheimer D (2005) Obesity: the protein leverage hypothesis. Obes Rev 6:133–142PubMed CrossRef
    17.Simpson SJ, Raubenheimer D (2012) The nature of nutrition. A unifying framework form animal adaption to human obesity. Princeton University Press, Princeton
    18.Le Couteur DG, Wilder SM, de Cabo R, Simpson SJ (2014) The evolution of research on ageing and nutrition. J Gerontol A Biol Sci Med Sci 69:1–2PubMed CrossRef
    19.Simpson SJ, Raubenheimer D (2007) Caloric restriction and aging revisited: the need for a geometric analysis of the nutritional bases of aging. J Gerontol A Biol Sci Med Sci 62:707–713PubMed CrossRef
    20.Simpson SJ, Raubenheimer D (2014) Perspective: tricks of the trade. Nature 508:S66PubMed CrossRef
    21.Lee KP, Simpson SJ, Clissold FJ, Brooks R, Ballard JW, Taylor PW, Soran N, Raubenheimer D (2008) Lifespan and reproduction in Drosophila: new insights from nutritional geometry. Proc Natl Acad Sci USA 105:2498–2503PubMedCentral PubMed CrossRef
    22.Skorupa DA, Dervisefendic A, Zwiener J, Pletcher SD (2008) Dietary composition specifies consumption, obesity, and lifespan in Drosophila melanogaster. Aging Cell 7:478–490PubMedCentral PubMed CrossRef
    23.Jensen K, McClure C, Priest NK, Hunt J (2015) Sex-specific effects of protein and carbohydrate intake on reproduction but not lifespan in Drosophila melanogaster. Aging Cell 14:605–615PubMedCentral PubMed CrossRef
    24.Fanson BG, Taylor PW (2012) Protein:carbohydrate ratios explain life span patterns found in Queensland fruit fly on diets varying in yeast:sugar ratios. Age (Dordr) 34:1361–1368CrossRef
    25.Fanson BG, Weldon CW, Perez-Staples D, Simpson SJ, Taylor PW (2009) Nutrients, not caloric restriction, extend lifespan in Queensland fruit flies (Bactrocera tryoni). Aging Cell 8:514–523PubMed CrossRef
    26.Harrison SJ, Raubenheimer D, Simpson SJ, Godin JG, Bertram SM (2014) Towards a synthesis of frameworks in nutritional ecology: interacting effects of protein, carbohydrate and phosphorus on field cricket fitness. Proc Biol Sci 281(1792). doi:10.​1098/​rspb.​2014.​0539
    27.Solon-Biet S, McMahon A, Ballard JWO, Ruohonen K, Wu L, Cogger V, Warren A, Huang X, Pichaud N, Melvin RG, Gokarn R, Khalil M, Turner N, Cooney G, Sinclair D, Raubenheimer D, Le Couteur D, Simpson S (2014) The ratio of macronutrients, not caloric intake, dictates cardiometabolic health, aging and longevity in ad libitum-fed mice. Cell Metab 19:418–430PubMed CrossRef
    28.Holliday R (2006) Food, fertility and longevity. Biogerontology 7:139–141PubMed CrossRef
    29.McCay CM, Bing FC, Dilley WE (1928) Factor H in the nutrition of trout. Science 67:249–250PubMed CrossRef
    30.Maklakov AA, Simpson SJ, Zajitschek F, Hall MD, Dessmann J, Clissold F, Raubenheimer D, Bonduriansky R, Brooks RC (2008) Sex-specific fitness effects of nutrient intake on reproduction and lifespan. Curr Biol 18:1062–1066PubMed CrossRef
    31.Dussutour A, Simpson SJ (2012) Ant workers die young and colonies collapse when fed a high-protein diet. Proc Biol Sci 279:2402–2408PubMedCentral PubMed CrossRef
    32.Paoli PP, Donley D, Stabler D, Saseendranath A, Nicolson SW, Simpson SJ, Wright GA (2014) Nutritional balance of essential amino acids and carbohydrates of the adult worker honeybee depends on age. Amino Acids 46:1449–1458PubMedCentral PubMed CrossRef
    33.Stabler D, Paoli PP, Nicolson SW, Wright GA (2015) Nutrient balancing of the adult worker bumblebee (Bombus terrestris) depends on the dietary source of essential amino acids. J Exp Biol 218:793–802PubMedCentral PubMed CrossRef
    34.Grandison RC, Piper MD, Partridge L (2009) Amino-acid imbalance explains extension of lifespan by dietary restriction in Drosophila. Nature 462:1061–1064PubMedCentral PubMed CrossRef
    35.Dick KB, Ross CR, Yampolsky LY (2011) Genetic variation of dietary restriction and the effects of nutrient-free water and amino acid supplements on lifespan and fecundity of Drosophila. Genet Res (Camb) 93:265–273CrossRef
    36.Emran S, Yang M, He X, Zandveld J, Piper MD (2014) Target of rapamycin signalling mediates the lifespan-extending effects of dietary restriction by essential amino acid alteration. Aging (Albany NY) 6:390–398
    37.Zajitschek F, Zajitschek SR, Friberg U, Maklakov AA (2013) Interactive effects of sex, social environment, dietary restriction, and methionine on survival and reproduction in fruit flies. Age (Dordr) 35:1193–1204CrossRef
    38.Carey JR, Harshman LG, Liedo P, Muller HG, Wang JL, Zhang Z (2008) Longevity-fertility trade-offs in the tephritid fruit fly, Anastrepha ludens, across dietary-restriction gradients. Aging Cell 7:470–477PubMedCentral PubMed CrossRef
    39.Zou S, Carey JR, Liedo P, Ingram DK, Yu B, Ghaedian R (2010) Prolongevity effects of an oregano and cranberry extract are diet dependent in the Mexican fruit fly (Anastrepha ludens). J Gerontol A Biol Sci Med Sci 65:41–50PubMed CrossRef
    40.Wang C, Wheeler CT, Alberico T, Sun X, Seeberger J, Laslo M, Spangler E, Kern B, de Cabo R, Zou S (2011) The effect of resveratrol on lifespan depends on both gender and dietary nutrient composition in Drosophila melanogaster. Age (Dordr) 35:69–81
    41.Baur JA, Pearson KJ, Price NL, Jamieson HA, Lerin C, Kalra A, Prabhu VV, Allard JS, Lopez-Lluch G, Lewis K, Pistell PJ, Poosala S, Becker KG, Boss O, Gwinn D, Wang M, Ramaswamy S, Fishbein KW, Spencer RG, Lakatta EG, Le Couteur D, Shaw RJ, Navas P, Puigserver P, Ingram DK, de Cabo R, Sinclair DA (2006) Resveratrol improves health and survival of mice on a high-calorie diet. Nature 444:337–342PubMed CrossRef
    42.Pearson KJ, Baur JA, Lewis KN, Peshkin L, Price NL, Labinskyy N, Swindell WR, Kamara D, Minor RK, Perez E, Jamieson HA, Zhang Y, Dunn SR, Sharma K, Pleshko N, Woollett LA, Csiszar A, Ikeno Y, Le Couteur D, Elliott PJ, Becker KG, Navas P, Ingram DK, Wolf NS, Ungvari Z, Sinclair DA, de Cabo R (2008) Resveratrol delays age-related deterioration and mimics transcriptional aspects of dietary restriction without extending life span. Cell Metab 8:157–168PubMedCentral PubMed CrossRef
    43.Min KJ, Tatar M (2006) Restriction of amino acids extends lifespan in Drosophila melanogaster. Mech Ageing Dev 127:643–646PubMed CrossRef
    44.Lee KP (2015) Dietary protein:carbohydrate balance is a critical modulator of lifespan and reproduction in Drosophila melanogaster: a test using a chemically defined diet. J Insect Physiol 75:12–19PubMed CrossRef
    45.Ja WW, Carvalho GB, Zid BM, Mak EM, Brummel T, Benzer S (2009) Water- and nutrient-dependent effects of dietary restriction on Drosophila lifespan. Proc Natl Acad Sci USA 106:18633–18637PubMedCentral PubMed CrossRef
    46.Adler MI, Bonduriansky R (2014) Why do the well-fed appear to die young? A new evolutionary hypothesis for the effect of dietary restriction on lifespan. BioEssays 36:439–450PubMed CrossRef
    47.Le Couteur DG, Tay SS, Solon-Biet S, Bertolino P, McMahon AC, Cogger VC, Colakoglu F, Warren A, Holmes AJ, Pichaud N, Horan M, Correa C, Melvin RG, Turner N, Ballard JW, Ruohonen K, Raubenheimer D, Simpson SJ (2014) The influence of macronutrients on splanchnic and hepatic lymphocytes in aging mice. J Gerontol A Biol Sci Med Sci 70:1499–1507PubMed
    48.Solon-Biet SM, Walters KA, Simanainen UK, McMahon AC, Ruohonen K, Ballard JW, Raubenheimer D, Handelsman DJ, Le Couteur DG, Simpson SJ (2015) Macronutrient balance, reproductive function, and lifespan in aging mice. Proc Natl Acad Sci USA 112:3481–3486PubMedCentral PubMed CrossRef
    49.Nakagawa I, Masana Y (1971) Effect of protein nutrition on growth and life span in the rat. J Nutr 101:613–620PubMed
    50.Ross MH, Bras G (1973) Influence of protein under- and overnutrition on spontaneous tumor prevalence in the rat. J Nutr 103:944–963PubMed
    51.Davis TA, Bales CW, Beauchene RE (1983) Differential effects of dietary caloric and protein restriction in the aging rat. Exp Gerontol 18:427–435PubMed CrossRef
    52.Leto S, Kokkonen GC, Barrows CH Jr (1976) Dietary protein, life-span, and biochemical variables in female mice. J Gerontol 31:144–148PubMed CrossRef
    53.Leto S, Kokkonen GC, Barrows CH (1976) Dietary protein life-span, and physiological variables in female mice. J Gerontol 31:149–154PubMed CrossRef
    54.Goodrick CL (1978) Body weight increment and length of life: the effect of genetic constitution and dietary protein. J Gerontol 33:184–190PubMed CrossRef
    55.Slonaker JR (1931) The effect of different per cents of protein in the diet I Growth. Am J Physiol 96:547–556
    56.Horakova M, Deyl Z, Hausmann J, Macek K (1988) The effect of low protein-high dextrin diet and subsequent food restriction upon life prolongation in Fischer 344 male rats. Mech Ageing Dev 45:1–7PubMed CrossRef
    57.Yu BP, Masoro EJ, McMahan CA (1985) Nutritional influences on aging of Fischer 344 rats: I. Physical, metabolic, and longevity characteristics. J Gerontol 40:657–670PubMed CrossRef
    58.Masoro EJ, Iwasaki K, Gleiser CA, McMahan CA, Seo EJ, Yu BP (1989) Dietary modulation of the progression of nephropathy in aging rats: an evaluation of the importance of protein. Am J Clin Nutr 49:1217–1227PubMed
    59.Nakagawa S, Lagisz M, Hector KL, Spencer HG (2012) Comparative and meta-analytic insights into life-extension via dietary restriction. Aging Cell 11:401–409PubMed CrossRef
    60.De Marte ML, Enesco HE (1986) Influence of low tryptophan diet on survival and organ growth in mice. Mech Ageing Dev 36:161–171PubMed CrossRef
    61.Zimmerman JA, Malloy V, Krajcik R, Orentreich N (2003) Nutritional control of aging. Exp Gerontol 38:47–52PubMed CrossRef
    62.Lopez-Torres M, Barja G (2008) Lowered methionine ingestion as responsible for the decrease in rodent mitochondrial oxidative stress in protein and dietary restriction possible implications for humans. Biochim Biophys Acta 1780:1337–1347PubMed CrossRef
    63.Pamplona R, Barja G (2006) Mitochondrial oxidative stress, aging and caloric restriction: the protein and methionine connection. Biochim Biophys Acta 1757:496–508PubMed CrossRef
    64.Iwasaki K, Gleiser CA, Masoro EJ, McMahan CA, Seo EJ, Yu BP (1988) Influence of the restriction of individual dietary components on longevity and age-related disease of Fischer rats: the fat component and the mineral component. J Gerontol 43:B13–B21PubMed CrossRef
    65.Harrison DE, Strong R, Sharp ZD, Nelson JF, Astle CM, Flurkey K, Nadon NL, Wilkinson JE, Frenkel K, Carter CS, Pahor M, Javors MA, Fernandez E, Miller RA (2009) Rapamycin fed late in life extends lifespan in genetically heterogeneous mice. Nature 460:392–395PubMedCentral PubMed
    66.Mirzaei H, Suarez JA, Longo VD (2014) Protein and amino acid restriction, aging and disease: from yeast to humans. Trends Endocrinol Metab 25:558–566PubMedCentral PubMed CrossRef
    67.Baur JA, Ungvari Z, Minor RK, Le Couteur DG, de Cabo R (2012) Are sirtuins proper targets for improving healthspan and lifespan? Nat Rev Drug Discov 11:443–461PubMedCentral PubMed CrossRef
    68.Mercken EM, Mitchell SJ, Martin-Montalvo A, Minor RK, Almeida M, Gomes AP, Scheibye-Knudsen M, Palacios HH, Licata JJ, Zhang YQ, Becker KG, Khraiwesh H, Gonzalez-Reyes JA, Villalba JM, Baur JA, Elliott P, Westphal C, Vlasuk GP, Ellis JL, Sinclair DA, Bernier M, de Cabo R (2014) SRT2104 extends survival of male mice on a standard diet and preserves bone and muscle mass. Aging Cell 13:787–796PubMedCentral PubMed CrossRef
    69.Fung TT, van Dam RM, Hankinson SE, Stampfer M, Willett WC, Hu FB (2010) Low-carbohydrate diets and all-cause and cause-specific mortality: two cohort studies. Ann Intern Med 153:289–298PubMedCentral PubMed CrossRef
    70.Blouet C, Mariotti F, Azzout-Marniche D, Bos C, Mathe V, Tome D, Huneau JF (2006) The reduced energy intake of rats fed a high-protein low-carbohydrate diet explains the lower fat deposition, but macronutrient substitution accounts for the improved glycemic control. J Nutr 136:1849–1854PubMed
    71.Foo SY, Heller ER, Wykrzykowska J, Sullivan CJ, Manning-Tobin JJ, Moore KJ, Gerszten RE, Rosenzweig A (2009) Vascular effects of a low-carbohydrate high-protein diet. Proc Natl Acad Sci USA 106:15418–15423PubMedCentral PubMed CrossRef
    72.Solon-Biet SM, Mitchell SJ, Coogan SC, Cogger VC, Gokarn R, McMahon AC, Raubenheimer D, de Cabo R, Simpson SJ, Le Couteur DG (2015) Dietary protein to carbohydrate ratio and caloric restriction: comparing metabolic outcomes in mice. Cell Rep 11:1529–1534PubMed CrossRef
    73.Mitchell SE, Delville C, Konstantopedos P, Derous D, Green CL, Chen L, Han JD, Wang Y, Promislow DE, Douglas A, Lusseau D, Speakman JR (2015) The effects of graded levels of calorie restriction: III. Impact of short term calorie and protein restriction on mean daily body temperature and torpor use in the C57BL/6 mouse. Oncotarget 6:18314–18337PubMedCentral PubMed CrossRef
    74.Mitchell SE, Delville C, Konstantopedos P, Hurst J, Derous D, Green C, Chen L, Han JJ, Wang Y, Promislow DE, Lusseau D, Douglas A, Speakman JR (2015) The effects of graded levels of calorie restriction: II. Impact of short term calorie and protein restriction on circulating hormone levels, glucose homeostasis and oxidative stress in male C57BL/6 mice. Oncotarget 6:23213–23237PubMedCentral PubMed CrossRef
    75.Mitchell SE, Tang Z, Kerbois C, Delville C, Konstantopedos P, Bruel A, Derous D, Green C, Aspden RM, Goodyear SR, Chen L, Han JJ, Wang Y, Promislow DE, Lusseau D, Douglas A, Speakman JR (2015) The effects of graded levels of calorie restriction: I. impact of short term calorie and protein restriction on body composition in the C57BL/6 mouse. Oncotarget 6:15902–15930PubMedCentral PubMed CrossRef
    76.Huang X, Hancock DP, Gosby AK, McMahon AC, Solon SM, Le Couteur DG, Conigrave AD, Raubenheimer D, Simpson SJ (2013) Effects of dietary protein to carbohydrate balance on energy intake, fat storage, and heat production in mice. Obesity (Silver Spring) 21:85–92CrossRef
    77.Noto H, Goto A, Tsujimoto T, Noda M (2013) Low-carbohydrate diets and all-cause mortality: a systematic review and meta-analysis of observational studies. PLoS One 8:e55030PubMedCentral PubMed CrossRef
    78.Naude CE, Schoonees A, Senekal M, Young T, Garner P, Volmink J (2014) Low carbohydrate versus isoenergetic balanced diets for reducing weight and cardiovascular risk: a systematic review and meta-analysis. PLoS One 9:e100652PubMedCentral PubMed CrossRef
    79.Gardner CD, Kiazand A, Alhassan S, Kim S, Stafford RS, Balise RR, Kraemer HC, King AC (2007) Comparison of the Atkins, Zone, Ornish, and LEARN diets for change in weight and related risk factors among overweight premenopausal women: the A TO Z Weight Loss Study: a randomized trial. JAMA 297:969–977PubMed CrossRef
    80.Hession M, Rolland C, Kulkarni U, Wise A, Broom J (2009) Systematic review of randomized controlled trials of low-carbohydrate vs. low-fat/low-calorie diets in the management of obesity and its comorbidities. Obes Rev 10:36–50PubMed CrossRef
    81.Ajala O, English P, Pinkney J (2013) Systematic review and meta-analysis of different dietary approaches to the management of type 2 diabetes. Am J Clin Nutr 97:505–516PubMed CrossRef
    82.Pedersen AN, Kondrup J, Borsheim E (2013) Health effects of protein intake in healthy adults: a systematic literature review. Food Nutr Res. doi:10.​3402/​fnr.​v3457i3400.​21245 PubMedCentral PubMed
    83.Lagiou P, Sandin S, Weiderpass E, Lagiou A, Mucci L, Trichopoulos D, Adami HO (2007) Low carbohydrate-high protein diet and mortality in a cohort of Swedish women. J Intern Med 261:366–374PubMed CrossRef
    84.Trichopoulou A, Psaltopoulou T, Orfanos P, Hsieh CC, Trichopoulos D (2007) Low-carbohydrate-high-protein diet and long-term survival in a general population cohort. Eur J Clin Nutr 61:575–581PubMed
    85.Sjogren P, Becker W, Warensjo E, Olsson E, Byberg L, Gustafsson IB, Karlstrom B, Cederholm T (2010) Mediterranean and carbohydrate-restricted diets and mortality among elderly men: a cohort study in Sweden. Am J Clin Nutr 92:967–974PubMed CrossRef
    86.Nilsson LM, Winkvist A, Eliasson M, Jansson JH, Hallmans G, Johansson I, Lindahl B, Lenner P, Van Guelpen B (2012) Low-carbohydrate, high-protein score and mortality in a northern Swedish population-based cohort. Eur J Clin Nutr 66:694–700PubMed CrossRef
    87.Schulze MB, Schulz M, Heidemann C, Schienkiewitz A, Hoffmann K, Boeing H (2008) Carbohydrate intake and incidence of type 2 diabetes in the European Prospective Investigation into Cancer and Nutrition (EPIC)-Potsdam Study. Br J Nutr 99:1107–1116PubMed CrossRef
    88.Sluijs I, Beulens JW, van der AD, Spijkerman AM, Grobbee DE, van der Schouw YT (2010) Dietary intake of total, animal, and vegetable protein and risk of type 2 diabetes in the European Prospective Investigation into Cancer and Nutrition (EPIC)-NL study. Diabetes Care 33:43–48
    89.Lagiou P, Sandin S, Lof M, Trichopoulos D, Adami HO, Weiderpass E (2012) Low carbohydrate-high protein diet and incidence of cardiovascular diseases in Swedish women: prospective cohort study. BMJ 344:e4026PubMedCentral PubMed CrossRef
    90.Simpson SJ, Batley R, Raubenheimer D (2003) Geometric analysis of macronutrient intake in humans: the power of protein? Appetite 41:123–140PubMed CrossRef
    91.Wildman RP (2009) Healthy obesity. Curr Opin Clin Nutr Metab Care 12:438–443PubMed CrossRef
    92.Liao CY, Rikke BA, Johnson TE, Gelfond JA, Diaz V, Nelson JF (2011) Fat maintenance is a predictor of the murine lifespan response to dietary restriction. Aging Cell 10:629–639PubMedCentral PubMed CrossRef
    93.Harrison DE, Archer JR, Astle CM (1984) Effects of food restriction on aging: separation of food intake and adiposity. Proc Natl Acad Sci USA 81:1835–1838PubMedCentral PubMed CrossRef
    94.Lopez-Lluch G, Irusta PM, Navas P, de Cabo R (2008) Mitochondrial biogenesis and healthy aging. Exp Gerontol 43:813–819PubMedCentral PubMed CrossRef
    95.Gonzalez-Freire M, de Cabo R, Bernier M, Sollott SJ, Fabbri E, Navas P, Ferrucci L (2015) Reconsidering the role of mitochondria in aging. J Gerontol A Biol Sci Med Sci 70:1334–1342PubMed CrossRef
    96.Lopez-Otin C, Blasco MA, Partridge L, Serrano M, Kroemer G (2013) The hallmarks of aging. Cell 153:1194–1217PubMedCentral PubMed CrossRef
    97.Miquel J, Economos AC, Fleming J, Johnson JE Jr (1980) Mitochondrial role in cell aging. Exp Gerontol 15:575–591PubMed CrossRef
    98.Ristow M, Zarse K (2010) How increased oxidative stress promotes longevity and metabolic health: the concept of mitochondrial hormesis (mitohormesis). Exp Gerontol 45:410–418PubMed CrossRef
    99.Scialo F, Sriram A, Naudi A, Ayala V, Jove M, Pamplona R, Sanz A (2015) Target of rapamycin activation predicts lifespan in fruit flies. Cell Cycle 14:2949–2958PubMedCentral PubMed CrossRef
    100.Wei Y, Zhang YJ, Cai Y, Xu MH (2015) The role of mitochondria in mTOR-regulated longevity. Biol Rev Camb Philos Soc 90:167–181PubMed CrossRef
    101.Guarente L (2007) Sirtuins in aging and disease. Cold Spring Harb Symp Quant Biol 72:483–488PubMed CrossRef
    102.Rambold AS, Kostelecky B, Lippincott-Schwartz J (2011) Fuse or die: shaping mitochondrial fate during starvation. Commun Integr Biol 4:752–754PubMedCentral PubMed CrossRef
    103.Solon-Biet SM, McMahon AC, Ballard JW, Ruohonen K, Wu LE, Cogger VC, Warren A, Huang X, Pichaud N, Melvin RG, Gokarn R, Khalil M, Turner N, Cooney GJ, Sinclair DA, Raubenheimer D, Le Couteur DG, Simpson SJ (2014) The ratio of macronutrients, not caloric intake, dictates cardiometabolic health, aging, and longevity in ad libitum-fed mice. Cell Metab 19:418–430PubMed CrossRef
    104.Holloszy JO (1997) Mortality rate and longevity of food-restricted exercising male rats: a reevaluation. J Appl Physiol (1985) 82:399–403
    105.Chen D, Steele AD, Lindquist S, Guarente L (2005) Increase in activity during calorie restriction requires Sirt1. Science 310:1641PubMed CrossRef
    106.Conti B (2008) Considerations on temperature, longevity and aging. Cell Mol Life Sci 65:1626–1630PubMedCentral PubMed CrossRef
    107.Vaanholt LM, Daan S, Schubert KA, Visser GH (2009) Metabolism and aging: effects of cold exposure on metabolic rate, body composition, and longevity in mice. Physiol Biochem Zool 82:314–324PubMed CrossRef
    108.Landsberg L (2012) Core temperature: a forgotten variable in energy expenditure and obesity? Obes Rev 13(Suppl 2):97–104PubMed CrossRef
    109.Simpson SJ, Raubenheimer D (1997) Geometric analysis of macronutrient selection in the rat. Appetite 28:201–213PubMed CrossRef
    110.Slocum N, Durrant JR, Bailey D, Yoon L, Jordan H, Barton J, Brown RH, Clifton L, Milliken T, Harrington W, Kimbrough C, Faber CA, Cariello N, Elangbam CS (2013) Responses of brown adipose tissue to diet-induced obesity, exercise, dietary restriction and ephedrine treatment. Exp Toxicol Pathol 65:549–557PubMed CrossRef
    111.Busiello RA, Savarese S, Lombardi A (2015) Mitochondrial uncoupling proteins and energy metabolism. Front Physiol 6:36PubMedCentral PubMed CrossRef
    112.Caldeira da Silva CC, Cerqueira FM, Barbosa LF, Medeiros MH, Kowaltowski AJ (2008) Mild mitochondrial uncoupling in mice affects energy metabolism, redox balance and longevity. Aging Cell 7:552–560PubMed CrossRef
    113.Mookerjee SA, Divakaruni AS, Jastroch M, Brand MD (2010) Mitochondrial uncoupling and lifespan. Mech Ageing Dev 131:463–472PubMedCentral PubMed CrossRef
    114.Gates AC, Bernal-Mizrachi C, Chinault SL, Feng C, Schneider JG, Coleman T, Malone JP, Townsend RR, Chakravarthy MV, Semenkovich CF (2007) Respiratory uncoupling in skeletal muscle delays death and diminishes age-related disease. Cell Metab 6:497–505PubMed CrossRef
    115.Neufer PD, Bamman MM, Muoio DM, Bouchard C, Cooper DM, Goodpaster BH, Booth FW, Kohrt WM, Gerszten RE, Mattson MP, Hepple RT, Kraus WE, Reid MB, Bodine SC, Jakicic JM, Fleg JL, Williams JP, Joseph L, Evans M, Maruvada P, Rodgers M, Roary M, Boyce AT, Drugan JK, Koenig JI, Ingraham RH, Krotoski D, Garcia-Cazarin M, McGowan JA, Laughlin MR (2015) Understanding the cellular and molecular mechanisms of physical activity-induced health benefits. Cell Metab 22:4–11PubMed CrossRef
    116.Broskey NT, Greggio C, Boss A, Boutant M, Dwyer A, Schlueter L, Hans D, Gremion G, Kreis R, Boesch C, Canto C, Amati F (2014) Skeletal muscle mitochondria in the elderly: effects of physical fitness and exercise training. J Clin Endocrinol Metab 99:1852–1861PubMed CrossRef
    117.Van Herrewege J (1974) Nutritional requirements of adult Drosophila melanogaster: the influence of the casein concentration on the duration of life. Exp Gerontol 9:191–198PubMed CrossRef
    118.Mair W, Piper MD, Partridge L (2005) Calories do not explain extension of life span by dietary restriction in Drosophila. PLoS Biol 3:e223PubMedCentral PubMed CrossRef
    119.Lushchak OV, Gospodaryov DV, Rovenko BM, Glovyak AD, Yurkevych IS, Klyuba VP, Shcherbij MV, Lushchak VI (2012) Balance between macronutrients affects life span and functional senescence in fruit fly Drosophila melanogaster. J Gerontol A Biol Sci Med Sci 67:118–125PubMed CrossRef
    120.Bruce KD, Hoxha S, Carvalho GB, Yamada R, Wang HD, Karayan P, He S, Brummel T, Kapahi P, Ja WW (2013) High carbohydrate-low protein consumption maximizes Drosophila lifespan. Exp Gerontol 48:1129–1135PubMedCentral PubMed CrossRef
    121.Zhu CT, Ingelmo P, Rand DM (2014) GxGxE for lifespan in Drosophila: mitochondrial, nuclear, and dietary interactions that modify longevity. PLoS Genet 10:e1004354PubMedCentral PubMed CrossRef
    122.Piper MD, Blanc E, Leitao-Goncalves R, Yang M, He X, Linford NJ, Hoddinott MP, Hopfen C, Soultoukis GA, Niemeyer C, Kerr F, Pletcher SD, Ribeiro C, Partridge L (2014) A holidic medium for Drosophila melanogaster. Nat Methods 11:100–105PubMed CrossRef
    123.Liedo P, Carey JR, Ingram DK, Zou S (2012) The interplay among dietary fat, sugar, protein and acai (Euterpe oleracea Mart.) pulp in modulating lifespan and reproduction in a Tephritid fruit fly. Exp Gerontol 47:536–539PubMedCentral PubMed CrossRef
    124.Pirk CW, Boodhoo C, Human H, Nicolson SW (2009) The importance of portein type and protein to carbohydrate ratio for survival and ovarian activation of caged honeybees (Apis mellifera scutella). Apidologie 41:62–72CrossRef
    125.Paoli PP, Wakeling LA, Wright GA, Ford D (2014) The dietary proportion of essential amino acids and Sir2 influence lifespan in the honeybee. Age (Dordr) 36:9649CrossRef
    126.Preuss HG (1997) Effects of diets containing different proportions of macronutrients on longevity of normotensive Wistar rats. Geriatr Nephrol Urol 7:81–86PubMed CrossRef
    127.Lopez-Lluch G, Hunt N, Jones B, Zhu M, Jamieson H, Hilmer S, Cascajo MV, Allard J, Ingram DK, Navas P, de Cabo R (2006) Calorie restriction induces mitochondrial biogenesis and bioenergetic efficiency. Proc Natl Acad Sci USA 103:1768–1773PubMedCentral PubMed CrossRef
    128.Bevilacqua L, Ramsey JJ, Hagopian K, Weindruch R, Harper ME (2005) Long-term caloric restriction increases UCP3 content but decreases proton leak and reactive oxygen species production in rat skeletal muscle mitochondria. Am J Physiol Endocrinol Metab 289:E429–E438PubMed CrossRef
    129.Slonaker JR (1931) The effect of different per cents of protein in the diet III Intake and expenditure of energy. Am J Physiol 97:15–21
  • 作者单位:David G. Le Couteur (1) (2)
    Samantha Solon-Biet (1) (2)
    Victoria C. Cogger (1) (2)
    Sarah J. Mitchell (3)
    Alistair Senior (1) (4)
    Rafael de Cabo (4)
    David Raubenheimer (1) (5) (6)
    Stephen J. Simpson (1) (5)

    1. Charles Perkins Centre, University of Sydney, Sydney, 2006, Australia
    2. Ageing and Alzheimers Institute and ANZAC Research Institute, Concord Hospital, Concord, 2139, Australia
    3. Translational Gerontology Branch, National Institute ON Aging, National Institutes of Health, Baltimore, MD, 21224, USA
    4. School of Mathematics and Statistics, University of Sydney, Sydney, Australia
    5. School of Biological Sciences, University of Sydney, Sydney, 2006, Australia
    6. Faculty of Veterinary Science, University of Sydney, Sydney, 2006, Australia
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Life Sciences
    Cell Biology
    Biomedicine
    Life Sciences
    Biochemistry
  • 出版者:Birkh盲user Basel
  • ISSN:1420-9071
文摘
Most research on nutritional effects on aging has focussed on the impact of manipulating single dietary factors such as total calorie intake or each of the macronutrients individually. More recent studies using a nutritional geometric approach called the Geometric Framework have facilitated an understanding of how aging is influenced across a landscape of diets that vary orthogonally in macronutrient and total energy content. Such studies have been performed using ad libitum feeding regimes, thus taking into account compensatory feeding responses that are inevitable in a non-constrained environment. Geometric Framework studies on insects and mice have revealed that diets low in protein and high in carbohydrates generate longest lifespans in ad libitum-fed animals while low total energy intake (caloric restriction by dietary dilution) has minimal effect. These conclusions are supported indirectly by observational studies in humans and a heterogeneous group of other types of interventional studies in insects and rodents. Due to compensatory feeding for protein dilution, low-protein, high-carbohydrate diets are often associated with increased food intake and body fat, a phenomenon called protein leverage. This could potentially be mitigated by supplementing these diets with interventions that influence body weight through physical activity and ambient temperature.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700