Arbitrary-Order Trigonometric Fourier Collocation Methods for Multi-Frequency Oscillatory Systems
详细信息    查看全文
  • 作者:Bin Wang ; Arieh Iserles ; Xinyuan Wu
  • 关键词:Second ; order ordinary differential equations ; Multi ; frequency oscillatory systems ; Trigonometric Fourier collocation methods ; Multi ; frequency oscillatory Hamiltonian systems ; Quadratic invariant ; Variation ; of ; constants formula ; Symplectic methods ; 65L05 ; 65L20 ; 65M20 ; 65P10
  • 刊名:Foundations of Computational Mathematics
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:16
  • 期:1
  • 页码:151-181
  • 全文大小:1,012 KB
  • 参考文献:1.L. Brugnano and F. Iavernaro. Line integral methods which preserve all invariants of conservative problems. J. Comput. Appl. Math. 236 (2012), 3905–3919.CrossRef MathSciNet MATH
    2.L. Brugnano, F. Iavernaro and D. Trigiante. A note on the efficient implementation of Hamiltonian BVMs. J. Comput. Appl. Math. 236 (2011), 375–383.CrossRef MathSciNet MATH
    3.L. Brugnano, F. Iavernaro and D. Trigiante. A simple framework for the derivation and analysis of effective one-step methods for ODEs. Appl. Math. Comput. 218 (2012), 8475–8485.CrossRef MathSciNet MATH
    4.L. Brugnano, F. Iavernaro and D. Trigiante. Energy and Quadratic Invariants Preserving integrators based upon Gauss collocation formulae. SIAM J. Numer. Anal. 50 (2012), 2897–2916.CrossRef MathSciNet MATH
    5.R.W. Butler and A.T.A. Wood. Laplace approximations for hypergeometric functions with matrix argument. Ann. Statist. 30 (2002), 1155–1177.CrossRef MathSciNet MATH
    6.E. Celledoni, R.I. McLachlan, B. Owren and G.R.W. Quispel. Energy-Preserving Integrators and the Structure of B-series. Found. Comput. Math. 10 (2010), 673–693.CrossRef MathSciNet MATH
    7.P. Chartier and A. Murua. Preserving first integrals and volume forms of additively split systems. IMA J. Numer. Anal. 27 (2007), 381–405.CrossRef MathSciNet MATH
    8.J.L. Cieslinski and B. Ratkiewicz. Energy-preserving numerical schemes of high accuracy for one-dimensional Hamiltonian systems. J. Phys. A: Math. Theor. 44 (2011), 155206.CrossRef MathSciNet
    9.D. Cohen. Conservation properties of numerical integrators for highly oscillatory Hamiltonian systems. IMA J. Numer. Anal. 26 (2006), 34–59.CrossRef MathSciNet MATH
    10.D. Cohen and E. Hairer. Linear energy-preserving integrators for Poisson systems. BIT 51 (2011), 91–101.CrossRef MathSciNet MATH
    11.D. Cohen, E. Hairer and C. Lubich. Numerical energy conservation for multi-frequency oscillatory differential equations. BIT 45 (2005), 287–305.CrossRef MathSciNet MATH
    12.D. Cohen, T. Jahnke, K. Lorenz and C. Lubich. Numericalintegrators for highly oscillatory Hamiltonian systems: a review, inAnalysis, Modeling and Simulation of Multiscale Problems (A. Mielke,ed.). Springer, Berlin (2006), 553–576.CrossRef
    13.M. Dahlby, B. Owren and T. Yaguchi. Preserving multiple first integrals by discrete gradients. J. Phys. A: Math. Theor. 44 (2011), 305205.CrossRef MathSciNet
    14.J.M. Franco. Runge-Kutta-Nyström methods adapted to the numerical integration of perturbed oscillators. Comput. Phys. Comm. 147 (2002), 770–787.CrossRef MathSciNet MATH
    15.J.M. Franco. Stability of explicit ARKN methods for perturbed oscillators. J. Comput. Appl. Math. 173 (2005), 389–396.CrossRef MathSciNet MATH
    16.J.M. Franco. New methods for oscillatory systems based on ARKN methods. Appl. Numer. Math. 56 (2006), 1040–1053.CrossRef MathSciNet MATH
    17.A. García, P. Martín and A.B. González. New methods for oscillatory problems based on classical codes. Appl. Numer. Math. 42 (2002), 141–157.CrossRef MathSciNet MATH
    18.B. García-Archilla, J.M. Sanz-Serna and R.D. Skeel. Long-time-step methods for oscillatory differential equations. SIAM J. Sci. Comput. 20 (1999), 930–963.CrossRef MathSciNet MATH
    19.R. Gutiérrez, J. Rodriguez and A.J. Sáez. Approximation of hypergeometric functions with matricial argument through their development in series of zonal polynomials. Electron. Trans. Numer. Anal. 11 (2000), 121–130.MathSciNet MATH
    20.E. Hairer. Energy-preserving variant of collocation methods. JNAIAM J. Numer. Anal. Ind. Appl. Math. 5 (2010), 73–84.MathSciNet
    21.E. Hairer and C. Lubich. Long-time energy conservation of numerical methods for oscillatory differential equations. SIAM J. Numer. Anal. 38 (2000), 414–441.CrossRef MathSciNet MATH
    22.E. Hairer, C. Lubich and G. Wanner. Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations. 2nd edn. Springer-Verlag, Berlin, Heidelberg, 2006.
    23.E. Hairer, R.I. McLachlan and R.D. Skeel. On energy conservation of the simplified Takahashi-Imada method. Math. Model. Numer. Anal. 43 (2009), 631–644.CrossRef MathSciNet MATH
    24.E. Hairer, S.P. Nørsett and G. Wanner. Solving OrdinaryDifferential Equations I: Nonstiff Problems. Springer-Verlag,Berlin, 1993.MATH
    25.J.K. Hale. Ordinary Differential Equations. Roberte E. Krieger Publishing company, Huntington, New York, 1980.MATH
    26.M. Hochbruck and C. Lubich. A Gautschi-type method for oscillatory second-order differential equations. Numer. Math. 83 (1999), 403–426.CrossRef MathSciNet MATH
    27.M. Hochbruck and A. Ostermann. Explicit exponential Runge-Kutta methods for semilineal parabolic problems. SIAM J. Numer. Anal. 43 (2005), 1069–1090.CrossRef MathSciNet MATH
    28.M. Hochbruck and A. Ostermann. Exponential integrators. Acta Numer. 19 (2010), 209–286.CrossRef MathSciNet MATH
    29.M. Hochbruck, A. Ostermann and J. Schweitzer. Exponential rosenbrock-type methods. SIAM J. Numer. Anal. 47 (2009), 786–803.CrossRef MathSciNet MATH
    30. F. Iavernaro and B. Pace. Conservative Block-Boundary Value Methods for the solution of Polynomial Hamiltonian Systems. AIP Conf. Proc. 1048 (2008), 888–891.CrossRef
    31.F. Iavernaro and D. Trigiante. High-order symmetric schemes for the energy conservation of polynomial Hamiltonian problems. JNAIAM J. Numer. Anal. Ind. Appl. Math. 4 (2009), 787–101.MathSciNet
    32.A. Iserles. A First Course in the Numerical Analysis of Differential Equations. 2nd edn. Cambridge University Press, Cambridge, 2008.CrossRef
    33.A. Iserles, G.R.W. Quispel and P.S.P. Tse. B-series methods cannot be volume-preserving. BIT 47 (2007), 351–378.CrossRef MathSciNet MATH
    34.A. Iserles and A. Zanna. Preserving algebraic invariants with Runge-Kutta methods. J. Comput. Appl. Math. 125 (2000), 69–81.CrossRef MathSciNet MATH
    35.P. Koev and A. Edelman. The efficient evaluation of the hypergeometric function of a matrix argument. Math. Comput. 75 (2006), 833–846.CrossRef MathSciNet MATH
    36.M. Leok and T. Shingel. Prolongation-collocation variational integrators. IMA J. Numer. Anal. 32 (2012), 1194–1216.CrossRef MathSciNet MATH
    37.J. Li, B. Wang, X. You and X. Wu. Two-step extended RKN methods for oscillatory systems. Comput. Phys. Comm. 182 (2011), 2486–2507.CrossRef MathSciNet MATH
    38.J. Li and X. Wu. Adapted Falkner-type methods solving oscillatory second-order differential equations. Numer. Algo. 62 (2013), 355–381.CrossRef MATH
    39.R.I. McLachlan, G.R.W. Quispel and P.S.P. Tse. Linearization-preserving self-adjoint and symplectic integrators. BIT 49 (2009), 177–197.CrossRef MathSciNet MATH
    40. M. Petkovšek, H.S. Wilf and D. Zeilberger. A=B, AK Peters Ltd., Wellesley, MA, 1996.MATH
    41.G.R.W. Quispel and D.I. McLaren. A new class of energy-preserving numerical integration methods. J. Phys. A 41 (2008), 045206.CrossRef MathSciNet
    42.E.D. Rainville. Special functions. Macmillan, New York, 1960.MATH
    43.S. Reich. Symplectic integration of constrained Hamiltonian systems by composition methods. SIAM J. Numer. Anal. 33 (1996), 475–491.CrossRef MathSciNet MATH
    44.S. Reich. On higher-order semi-explicit symplectic partitioned Runge-Kutta methods for constrained Hamiltonian systems. Numer. Math. 76 (1997), 231–247.CrossRef MathSciNet MATH
    45.D.S.P. Richards. High-Dimensional Random Matrices from the Classical Matrix Groups, and Generalized Hypergeometric Functions of Matrix Argument. Symmetry 3 (2011), 600–610.CrossRef MathSciNet
    46.J.M. Sanz-Serna. Symplectic integrators for Hamiltonian problems: an overview. Acta Numer. 1 (1992), 243–286.CrossRef MathSciNet
    47.C.W. Scherr and E.V. Ivash. Associated Legendre Functions. Am. J. Phys. 31 (1963), 753.CrossRef MathSciNet
    48.L.J. Slater. Generalized hypergeometric functions. Cambridge University Press, Cambridge, 1966.MATH
    49.Sun Geng. Construction of high order symplectic Runge-Kutta methods. J. Comput. Math. 11 (1993), 250–260.MathSciNet MATH
    50.P.J. Van der Houwen and B.P. Sommeijer. Explicit Runge-Kutta (-Nyström) methods with reduced phase errors for computing oscillating solutions. SIAM J. Numer. Anal. 24 (1987), 595–617.CrossRef MathSciNet MATH
    51.H. Van de Vyver. A fourth-order symplectic exponentially fitted integrator. Comput. Phys. Comm. 174 (2006), 115–130.
    52.B. Wang, K. Liu and X. Wu. A Filon-type asymptotic approach to solving highly oscillatory second-order initial value problems. J. Comput. Phys. 243 (2013), 210–223.CrossRef MathSciNet
    53.B. Wang and X. Wu. A new high precision energy-preserving integrator for system of oscillatory second-order differential equations. Phys. Lett. A 376 (2012), 1185–1190.CrossRef MathSciNet MATH
    54.B. Wang, X. Wu and H. Zhao. Novel improved multidimensional Strömer-Verlet formulas with applications to four aspects in scientific computation. Math. Comput. Modell. 57 (2013), 857–872.CrossRef MathSciNet MATH
    55.K. Wright. Some relationships between implicit Runge-Kutta, collocation and Lanczos \(\tau \) methods, and their stability properties. BIT 10 (1970), 217–227.CrossRef MATH
    56.X. Wu and B. Wang. Multidimensional adapted Runge-Kutta-Nyström methods for oscillatory systems. Comput. Phys. Comm. 181 (2010), 1955–1962.CrossRef MathSciNet MATH
    57.X. Wu, B. Wang and W. Shi. Efficient energy-preserving integrators for oscillatory Hamiltonian systems. J. Comput. Phys. 235 (2013), 587–605.CrossRef MathSciNet MATH
    58.X. Wu, B. Wang and J. Xia. Explicit symplectic multidimensional exponential fitting modified Runge-Kutta-Nyström methods. BIT 52 (2012), 773–795.CrossRef MathSciNet MATH
    59.X. Wu, X. You, W. Shi and B. Wang. ERKN integrators for systems of oscillatory second-order differential equations. Comput. Phys. Comm. 181 (2010), 1873–1887.CrossRef MathSciNet MATH
    60. X. Wu, X. You and B. Wang. Structure-Preserving Algorithms for Oscillatory Differential Equations. Springer-Verlag, Berlin, Heidelberg, 2013.CrossRef MATH
    61.X. Wu, X. You and J. Xia. Order conditions for ARKN methods solving oscillatory systems. Comput. Phys. Comm. 180 (2009), 2250–2257.CrossRef MathSciNet MATH
  • 作者单位:Bin Wang (1) (2)
    Arieh Iserles (3)
    Xinyuan Wu (2)

    1. School of Mathematical Sciences, Qufu Normal University, Qufu, 273165, Shandong, People’s Republic of China
    2. Department of Mathematics, Nanjing University, State Key Laboratory for Novel Software Technology at Nanjing University, Nanjing, 210093, People’s Republic of China
    3. Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Rd, Cambridge, CB3 0WA, UK
  • 刊物类别:Mathematics and Statistics
  • 刊物主题:Mathematics
    Numerical Analysis
    Computer Science, general
    Math Applications in Computer Science
    Linear and Multilinear Algebras and Matrix Theory
    Applications of Mathematics
  • 出版者:Springer New York
  • ISSN:1615-3383
文摘
We rigorously study a novel type of trigonometric Fourier collocation methods for solving multi-frequency oscillatory second-order ordinary differential equations (ODEs) \(q^{\prime \prime }(t)+Mq(t)=f(q(t))\) with a principal frequency matrix \(M\in \mathbb {R}^{d\times d}\). If \(M\) is symmetric and positive semi-definite and \(f(q) = -\nabla U(q)\) for a smooth function \(U(q)\), then this is a multi-frequency oscillatory Hamiltonian system with the Hamiltonian \(H(q,p)=p^{T}p/2+q^{T}Mq/2+U(q),\) where \(p = q'\). The solution of this system is a nonlinear multi-frequency oscillator. The new trigonometric Fourier collocation method takes advantage of the special structure brought by the linear term \(Mq\), and its construction incorporates the idea of collocation methods, the variation-of-constants formula and the local Fourier expansion of the system. The properties of the new methods are analysed. The analysis in the paper demonstrates an important feature, namely that the trigonometric Fourier collocation methods can be of an arbitrary order and when \(M\rightarrow 0\), each trigonometric Fourier collocation method creates a particular Runge–Kutta–Nyström-type Fourier collocation method, which is symplectic under some conditions. This allows us to obtain arbitrary high-order symplectic methods to deal with a special and important class of systems of second-order ODEs in an efficient way. The results of numerical experiments are quite promising and show that the trigonometric Fourier collocation methods are significantly more efficient in comparison with alternative approaches that have previously appeared in the literature. Keywords Second-order ordinary differential equations Multi-frequency oscillatory systems Trigonometric Fourier collocation methods Multi-frequency oscillatory Hamiltonian systems Quadratic invariant Variation-of-constants formula Symplectic methods

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700