Mean-field description and propagation of chaos in networks of Hodgkin-Huxley and FitzHugh-Nagumo neurons
详细信息    查看全文
  • 作者:Javier Baladron (3)
    Diego Fasoli (3)
    Olivier Faugeras (7) (8)
    Jonathan Touboul (7) (7) (8) (8)
  • 关键词:mean ; field limits ; propagation of chaos ; stochastic differential equations ; McKean ; Vlasov equations ; Fokker ; Planck equations ; neural networks ; neural assemblies ; Hodgkin ; Huxley neurons ; FitzHugh ; Nagumo neurons
  • 刊名:The Journal of Mathematical Neuroscience (JMN)
  • 出版年:2012
  • 出版时间:December 2012
  • 年:2012
  • 卷:2
  • 期:1
  • 全文大小:2085KB
  • 参考文献:1. McKean H: A class of Markov processes associated with nonlinear parabolic equations. / Proc Natl Acad Sci USA 1966,56(6):1907-911. CrossRef
    2. McKean H: Propagation of chaos for a class of non-linear parabolic equations. In / Stochastic Differential Equations. Air Force Office Sci. Res., Arlington; 1967:41-7. [ / Lecture Series in Differential Equations 7]
    3. Braun W, Hepp K: The Vlasov dynamics and its fluctuations in the 1/n limit of interacting classical particles. / Commun Math Phys 1977,56(2):101-13. CrossRef
    4. Dawson D: Critical dynamics and fluctuations for a mean-field model of cooperative behavior. / J Stat Phys 1983, 31:29-5. CrossRef
    5. Dobrushin RL: Prescribing a system of random variables by conditional distributions. / Theory Probab Appl 1970, 15:458-86. CrossRef
    6. Tanaka H: Probabilistic treatment of the Boltzmann equation of Maxwellian molecules. / Probab Theory Relat Fields 1978, 46:67-05.
    7. Tanaka H, Hitsuda M: Central limit theorem for a simple diffusion model of interacting particles. / Hiroshima Math J 1981,11(2):415-23.
    8. Tanaka H: Some probabilistic problems in the spatially homogeneous Boltzmann equation. In / Theory and Application of Random Fields Lecture Notes in Control and Information Sciences. Edited by: Kallianpur G. Springer, Berlin; 1983:258-67. CrossRef
    9. Tanaka H: Limit theorems for certain diffusion processes with interaction. In / Stochastic Analysis. North-Holland, Amsterdam; 1984:469-88. [ / North-Holland Mathematical Library 32]
    10. Sznitman A: Nonlinear reflecting diffusion process, and the propagation of chaos and fluctuations associated. / J Funct Anal 1984,56(3):311-36. CrossRef
    11. Sznitman A: A propagation of chaos result for Burgers-equation. / Probab Theory Relat Fields 1986,71(4):581-13. CrossRef
    12. Sznitman AS: Topics in propagation of chaos. In / Ecole d’Eté de Probabilités de Saint-Flour XIX 1989. Edited by: Burkholder D, Pardoux E, Sznitman AS. Springer, Berlin; 1991:165-51. [ / Lecture Notes in Math. 1464] CrossRef
    13. Ecker A, Berens P, Keliris G, Bethge M, Logothetis N, Tolias A: Decorrelated neuronal firing in cortical microcircuits. / Science 2010,327(5965):584. CrossRef
    14. Hodgkin A, Huxley A: A quantitative description of membrane current and its application to conduction and excitation in nerve. / J Physiol 1952, 117:500-44.
    15. Fitzhugh R: Theoretical effect of temperature on threshold in the Hodgkin-Huxley nerve model. / J Gen Physiol 1966,49(5):989-005. CrossRef
    16. FitzHugh R: Mathematical models of excitation and propagation in nerve. In / Biological Engineering. Edited by: Schwan HP. McGraw-Hill Book Co., New York; 1969:1-5.
    17. Izhikevich EM: / Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting. MIT Press, Cambridge; 2007.
    18. Lapicque L: Recherches quantitatifs sur l’excitation des nerfs traitee comme une polarisation. / J.?Physiol. Paris 1907, 9:620-35.
    19. Tuckwell HC: / Introduction to Theoretical Neurobiology. Cambridge University Press, Cambridge; 1988. CrossRef
    20. Ermentrout GB, Terman D: / Foundations of Mathematical Neuroscience.. Springer, Berlin; 2010. [ / Interdisciplinary Applied Mathematics]
    21. FitzHugh R: Mathematical models of threshold phenomena in the nerve membrane. / Bull Math Biol 1955,17(4):257-78.
    22. Nagumo J, Arimoto S, Yoshizawa S: An active pulse transmission line simulating nerve axon. / Proc IRE 1962, 50:2061-070. CrossRef
    23. Destexhe A, Mainen Z, Sejnowski T: Synthesis of models for excitable membranes, synaptic transmission and neuromodulation using a common kinetic formalism. / J Comput Neurosci 1994,1(3):195-30. CrossRef
    24. Kandel ER, Schwartz JH, Jessel TM: / Principles of Neural Science. 4th edition. McGraw-Hill, New York; 2000.
    25. Cox JC, Ingersoll JC Jr, Ross SA: A theory of the term structure of interest rates. / Econometrica 1985,53(2):385-07. CrossRef
    26. Mao X: / Stochastic Differential Equations and Applications. 2nd edition. Horwood, Chichester; 2008. CrossRef
    27. Amari S: Characteristics of random nets of analog neuron-like elements. / IEEE Trans Syst Man Cybern 1972,2(5):643-57. CrossRef
    28. Amari S: Dynamics of pattern formation in lateral-inhibition type neural fields. / Biol Cybern 1977,27(2):77-7. CrossRef
    29. Wilson H, Cowan J: Excitatory and inhibitory interactions in localized populations of model neurons. / Biophys J 1972, 12:1-4. CrossRef
    30. Wilson H, Cowan J: A mathematical theory of the functional dynamics of cortical and thalamic nervous tissue. / Biol Cybern 1973,13(2):55-0.
    31. Hammerstein A: Nichtlineare Integralgleichungen nebst Anwendungen. / Acta Math 1930, 54:117-76. CrossRef
    32. Faugeras O, Grimbert F, Slotine JJ: Absolute stability and complete synchronization in a class of neural fields models. / SIAM J Appl Math 2008, 61:205-50. CrossRef
    33. Coombes S, Owen MR: Bumps, breathers, and waves in a neural network with spike frequency adaptation. / Phys Rev Lett 2005.,94(14): Article ID 148102
    34. Ermentrout B: Neural networks as spatio-temporal pattern-forming systems. / Rep Prog Phys 1998, 61:353-30. CrossRef
    35. Ermentrout G, Cowan J: Temporal oscillations in neuronal nets. / J Math Biol 1979,7(3):265-80. CrossRef
    36. Laing C, Troy W, Gutkin B, Ermentrout G: Multiple bumps in a neuronal model of working memory. / SIAM J Appl Math 2002, 63:62-7. CrossRef
    37. Chossat P, Faugeras O: Hyperbolic planforms in relation to visual edges and textures perception. / PLoS Comput Biol 2009.,5(12): Article ID e1000625
    38. Veltz R, Faugeras O: Local/global analysis of the stationary solutions of some neural field equations. / SIAM J Appl Dyn Syst 2010,9(3):954-98. CrossRef
    39. Abbott L, Van Vreeswijk C: Asynchronous states in networks of pulse-coupled neuron. / Phys Rev 1993, 48:1483-490. CrossRef
    40. Amit D, Brunel N: Model of global spontaneous activity and local structured delay activity during delay periods in the cerebral cortex. / Cereb Cortex 1997, 7:237-52. CrossRef
    41. Brunel N, Hakim V: Fast global oscillations in networks of integrate-and-fire neurons with low firing rates. / Neural Comput 1999, 11:1621-671. CrossRef
    42. Brunel N: Dynamics of sparsely connected networks of excitatory and inhibitory spiking neurons. / J Comput Neurosci 2000, 8:183-08. CrossRef
    43. El Boustani S, Destexhe A: A master equation formalism for macroscopic modeling of asynchronous irregular activity states. / Neural Comput 2009, 21:46-00. CrossRef
    44. Mattia M, Del Giudice P: Population dynamics of interacting spiking neurons. / Phys Rev E, Stat Nonlinear Soft Matter Phys 2002.,66(5): Article ID 51917
    45. Cai D, Tao L, Shelley M, McLaughlin DW: An effective kinetic representation of fluctuation-driven neuronal networks with application to simple and complex cells in visual cortex. / Proc Natl Acad Sci USA 2004,101(20):7757-762. CrossRef
    46. Ly C, Tranchina D: Critical analysis of dimension reduction by a moment closure method in a population density approach to neural network modeling. / Neural Comput 2007,19(8):2032-092. CrossRef
    47. Rolls ET, Deco G: / The Noisy Brain: Stochastic Dynamics as a Principle of Brain Function. Oxford University Press, Oxford; 2010. CrossRef
    48. Softky WR, Koch C: The highly irregular firing of cortical cells is inconsistent with temporal integration of random EPSPs. / J Neurosci 1993, 13:334-50.
    49. Brunel N, Latham P: Firing rate of noisy quadratic integrate-and-fire neurons. / Neural Comput 2003, 15:2281-306. CrossRef
    50. Plesser HE: Aspects of signal processing in noisy neurons. / PhD thesis. Georg-August-Universit?t; 1999.Plesser HE: Aspects of signal processing in noisy neurons. / PhD thesis. Georg-August-Universit?t; 1999.
    51. Touboul J, Faugeras O: First hitting time of double integral processes to curved boundaries. / Adv Appl Probab 2008,40(2):501-28. CrossRef
    52. Beggs JM, Plenz D: Neuronal avalanches are diverse and precise activity patterns that are stable for many hours in cortical slice cultures. / J Neurosci 2004,24(22):5216-229. CrossRef
    53. Benayoun M, Cowan JD, van Drongelen W, Wallace E: Avalanches in a stochastic model of spiking neurons. / PLoS Comput Biol 2010.,6(7): Article ID e1000846
    54. Levina A, Herrmann JM, Geisel T: Phase transitions towards criticality in a neural system with adaptive interactions. / Phys Rev Lett 2009.,102(11): Article ID 118110
    55. Touboul J, Destexhe A: Can power-law scaling and neuronal avalanches arise from stochastic dynamics? / PLoS ONE 2010.,5(2): Article ID e8982
    56. Bressloff P: Stochastic neural field theory and the system-size expansion. / SIAM J Appl Math 2009, 70:1488-521. CrossRef
    57. Buice MA, Cowan JD: Field-theoretic approach to fluctuation effects in neural networks. / Phys Rev E, Stat Nonlinear Soft Matter Phys 2007.,75(5): Article ID 051919
    58. Buice M, Cowan J, Chow C: Systematic fluctuation expansion for neural network activity equations. / Neural Comput 2010,22(2):377-26. CrossRef
    59. Ohira T, Cowan J: Master-equation approach to stochastic neurodynamics. / Phys Rev E, Stat Nonlinear Soft Matter Phys 1993,48(3):2259-266. CrossRef
    60. Treves A: Mean-field analysis of neuronal spike dynamics. / Network 1993,4(3):259-84. CrossRef
    61. Gerstner W: Time structure of the activity in neural network models. / Phys Rev E, Stat Nonlinear Soft Matter Phys 1995, 51:738-58. CrossRef
    62. Faugeras O, Touboul J, Cessac B: A constructive mean-field analysis of multi-population neural networks with random synaptic weights and stochastic inputs. / Front Comput Neurosci 2009. doi:10.3389/neuro.10.001.2009
    63. Guionnet A: Averaged and quenched propagation of chaos for spin glass dynamics. / Probab Theory Relat Fields 1997,109(2):183-15. CrossRef
    64. Chizhov AV, Graham LJ: Population model of hippocampal pyramidal neurons, linking to refractory density approach to conductance-based neurons. / Phys Rev E, Stat Nonlinear Soft Matter Phys 2007., 75: Article ID 011924
    65. Sompolinsky H, Crisanti A, Sommers H: Chaos in random neural networks. / Phys Rev Lett 1988,61(3):259-62. CrossRef
    66. Sompolinsky H, Zippelius A: Relaxational dynamics of the Edwards-Anderson model and the mean-field theory of spin-glasses. / Phys Rev B, Condens Matter Mater Phys 1982,25(11):6860-875. CrossRef
    67. Bolley F, Ca?izo JA, Carrillo JA: Stochastic mean-field limit: non-Lipschitz forces and swarming. / Math Models Methods Appl Sci 2011,21(11):2179-210. CrossRef
    68. Talay D, Vaillant O: A stochastic particle method with random weights for the computation of statistical solutions of McKean-Vlasov equations. / Ann Appl Probab 2003, 13:140-80. CrossRef
    69. Bossy M, Talay D: A stochastic particle method for the McKean-Vlasov and the Burgers equation. / Math Comput 1997,66(217):157-92. CrossRef
    70. Hutzenthaler M, Jentzen A, Kloeden P: Strong and weak divergence in finite time of Euler’s method for stochastic differential equations with non-globally Lipschitz continuous coefficients. / Proc R Soc, Math Phys Eng Sci 2011,467(2130):1563-576. CrossRef
    71. Hutzenthaler M, Jentzen A: Convergence of the stochastic Euler scheme for locally Lipschitz coefficients. / Found Comput Math 2011,11(6):657-06. CrossRef
    72. Schiesser W: / The Numerical Method of Lines: Integration of Partial Differential Equations. Academic Press, San Diego; 1991.
    73. Schiesser WE, Griffiths GW: / A Compendium of Partial Differential Equation Models: Method of Lines Analysis with Matlab. 1st edition. Cambridge University Press, New York; 2009. CrossRef
    74. Ueberhuber CW: / Numerical Computation 2: Methods, Software, and Analysis. Springer, Berlin; 1997. CrossRef
    75. Morton KW, Mayers DF: / Numerical Solution of Partial Differential Equations: An Introduction. Cambridge University Press, Cambridge; 2005. CrossRef
    76. Touboul J, Hermann G, Faugeras O: Noise-induced behaviors in neural mean field dynamics. / SIAM J Appl Dyn Syst 2012,11(1):49-1. CrossRef
    77. Baladron J, Fasoli D, Faugeras O: Three applications of GPU computing in neuroscience. / Comput Sci Eng 2012, 14:40-7.Baladron J, Fasoli D, Faugeras O: Three applications of GPU computing in neuroscience. / Comput Sci Eng 2012, 14:40-7. Baladron J, Fasoli D, Faugeras O: Three applications of GPU computing in neuroscience. / Comput Sci Eng 2012, 14:40-47.
    78. Herrmann S, Tugaut J: Non-uniqueness of stationary measures for self-stabilizing processes. / Stoch Process Appl 2010,120(7):1215-246. CrossRef
    79. Pakdaman K, Thieullen M, Wainrib G: Fluid limit theorems for stochastic hybrid systems with application to neuron models. / Adv Appl Probab 2010,42(3):761-94. CrossRef
    80. Wainrib G: Randomness in neurons: a multiscale probabilistic analysis. / PhD thesis. Ecole Polytechnique; 2010.Wainrib G: Randomness in neurons: a multiscale probabilistic analysis. / PhD thesis. Ecole Polytechnique; 2010.
    81. Goldwyn JH, Imennov NS, Famulare M, Shea-Brown E: Stochastic differential equation models for ion channel noise in Hodgkin-Huxley neurons. / Phys Rev E, Stat Nonlinear Soft Matter Phys 2011.,83(4): Article ID 041908
    82. Evans LC: / Partial Differential Equations. American Mathematical Society, Providence; 1998. [ / Graduate Studies in Mathematics 19]
  • 作者单位:Javier Baladron (3)
    Diego Fasoli (3)
    Olivier Faugeras (7) (8)
    Jonathan Touboul (7) (7) (8) (8)

    3. NeuroMathComp Laboratory, INRIA, Sophia-Antipolis Méditerranée, 06902, Kragujevac, France
    7. CNRS/UMR 7241-INSERM U1050, Université Pierre et Marie Curie, ED 158, Paris, 75005, France
    8. MEMOLIFE Laboratory of Excellence and Paris Science Lettre, 11, Place Marcelin Berthelot, Paris, 75005, France
  • ISSN:2190-8567
文摘
We derive the mean-field equations arising as the limit of a network of interacting spiking neurons, as the number of neurons goes to infinity. The neurons belong to a fixed number of populations and are represented either by the Hodgkin-Huxley model or by one of its simplified version, the FitzHugh-Nagumo model. The synapses between neurons are either electrical or chemical. The network is assumed to be fully connected. The maximum conductances vary randomly. Under the condition that all neurons-initial conditions are drawn independently from the same law that depends only on the population they belong to, we prove that a propagation of chaos phenomenon takes place, namely that in the mean-field limit, any finite number of neurons become independent and, within each population, have the same probability distribution. This probability distribution is a solution of a set of implicit equations, either nonlinear stochastic differential equations resembling the McKean-Vlasov equations or non-local partial differential equations resembling the McKean-Vlasov-Fokker-Planck equations. We prove the well-posedness of the McKean-Vlasov equations, i.e. the existence and uniqueness of a solution. We also show the results of some numerical experiments that indicate that the mean-field equations are a good representation of the mean activity of a finite size network, even for modest sizes. These experiments also indicate that the McKean-Vlasov-Fokker-Planck equations may be a good way to understand the mean-field dynamics through, e.g. a bifurcation analysis. Mathematics Subject Classification (2000): 60F99, 60B10, 92B20, 82C32, 82C80, 35Q80.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700