Transcriptome analysis reveals critical genes and key pathways involved in early phyllotaxy development in maize
详细信息    查看全文
文摘
Integrated networks of gene expression, hormonal signaling and metabolite sensing regulate phyllotaxy pattern development. In this study, we characterized differentially expressed genes (DEGs) between maize plants with alternate and opposite phyllotaxies. Gene ontology and Kyoto Encyclopedia of Genes and Genomes analyses showed that 2432 DEGs were involved in biological processes, molecular functions, cellular components and many pathways. Importantly, we identified 19 DEGs related to plant hormone signal transduction. Additionally, we identified four main alternative splicing types: skipped exons, retained introns, alternative 5′-splice sites, and alternative 3′-splice sites, which exhibited different characteristics in the alternate and opposite phyllotaxy libraries. The reliability of the sequencing data was verified through using quantitative real-time reverse transcription PCR analysis of the 19 genes: 15 were validated to play a role in phytohormone signal transduction pathways. Taken together, our data provide new insight into the mechanisms of phyllotaxy pattern development, and will increase our understanding of how relative changes in gene expression determine alternate/opposite phyllotaxy in maize.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700