PdZn Surface Alloys as Models of Methanol Steam Reforming Catalysts: Molecular Studies by LEED, XPS, TPD and PM-IRAS
详细信息    查看全文
  • 作者:H. H. Holzapfel ; A. Wolfbeisser ; C. Rameshan ; C. Weilach…
  • 关键词:Palladium ; Zinc ; Alloy ; Model catalysts ; carbon monoxide ; Methanol steam reforming
  • 刊名:Topics in Catalysis
  • 出版年:2014
  • 出版时间:September 2014
  • 年:2014
  • 卷:57
  • 期:14-16
  • 页码:1218-1228
  • 全文大小:1,776 KB
  • 参考文献:1. Trimm DL, Onsan ZI (2001) Onboard fuel conversion for hydrogen-fuel-cell-driven vehicles. Catal Rev 43:31-4 CrossRef
    2. Palo DR, Dagle RA, Holladay JD (2007) Methanol steam reforming for hydrogen production. Chem Rev 107:3992-021 CrossRef
    3. Iwasa N, Kudo S, Takahashi H, Masuda S, Takezawa N (1993) Highly selective supported Pd catalysts for steam reforming of methanol. Catal Lett 19:211-16 CrossRef
    4. Iwasa N, Mayanagi T, Nomura W, Arai M, Takezawa N (2003) Effect of Zn addition to supported Pd catalysts in the steam reforming of methanol. Appl Catal A 248:153-60 CrossRef
    5. Haghofer A, Ferri D, F?ttinger K, Rupprechter G (2012) Who is doing the job? Unraveling the role of Ga2O3 in methanol steam reforming on Pd2?Ga/Ga2O3. ACS Catal 2:2305-315 CrossRef
    6. Haghofer A, F?ttinger K, Nachtegaal M, Armbrüster M, Rupprechter G (2012) Microstructural changes of supported intermetallic nanoparticles under reductive and oxidative conditions: an in situ X-ray absorption study of Pd/Ga2O3. J Phys Chem C 116:21816-1827 CrossRef
    7. Takezwaw N, Iwasa N (1997) steam reforming and dehydrogenation of methanol: difference in the catalytic functions of copper and group VIII metals. Catal Today 36:45-6 CrossRef
    8. F?ttinger K, van Bokhoven JA, Nachtegaal M, Rupprechter G (2011) Dynamic structure of a working methanol steam reforming catalyst. in situ quick-EXAFS on Pd/ZnO nanoparticles. J Phys Chem Lett 2:428-33 CrossRef
    9. Chen ZX, Neyman KM, Gordienko AB, R?sch N (2003) Surface structure and stability of PdZn and PtZn alloys: density-functional slab model studies. Phys Rev B 68:075417 CrossRef
    10. Bayer A, Flechtner K, Denecke R, Steinruck HP, Neyman KM, Rosch N (2006) Electronic properties of thin Zn layers on Pd(111) during growth and alloying. Surf Sci 600:78-4 CrossRef
    11. Gabasch H, Knop-Gericke A, Schl?gl R, Penner S, Jenewein B, Hayek K, Kl?tzer B (2006) Zn adsorption on Pd(111): ZnO and PdZn alloy formation. J Phys Chem B 110:11391-1398 CrossRef
    12. Rameshan C, Stadlmayr W, Weilach C, Penner S, Lorenz H, H?vecker M, Blume R, Rocha T, Teschner D, Knop-Gericke A, Schl?gl R, Memmel N, Zemlyanov D, Rupprechter G, Kl?tzer B (2010) Subsurface-controlled CO2 selectivity of PdZn near-surface alloys in H2 generation by methanol steam reforming. Angew Chem Int Ed 49:3224-227 CrossRef
    13. Stadlmayr W, Rameshan C, Weilach C, Lorenz H, H?vecker M, Blume R, Rocha T, Teschner D, Knop-Gericke A, Zemlyanov D, Penner S, Schl?gl R, Rupprechter G, Kl?tzer B, Memmel N (2010) Temperature-induced modifications of PdZn layers on Pd(111). J Phys Chem C 114:10850-0856 CrossRef
    14. Jeroro E, Lebarbler V, Datye A, Wang Y, Vohs JM (2007) Interaction of CO with surface PdZn alloys. Surf Sci 601:5546-554 CrossRef
    15. Jeroro E, Vohs JM (2008) Zn modification of the reactivity of Pd(111) toward methanol and formaldehyde. J Am Chem Soc 130:10199-0207 CrossRef
    16. Rodriguez JA (1994) Interactions in bimetallic bonding: electronic and chemical properties of PdZn surfaces. J Phys Chem 98:5758-764 CrossRef
    17. Gabasch H, Knop-Gericke A, Schloegl R, Borasio M, Weilach C, Rupprechter G, Penner S, Jenewein B, Hayek K, Kloetzer B (2007) Comparison of the reactivity of different Pd–O species in CO oxidation. PCCP 9:533-40 CrossRef
    18. Rupprechter G (2007) Sum frequency generation and polarization–modulation infrared reflection absorption spectroscopy of functioning model catalysts from ultrahigh vacuum to ambient pressure. Adv Catal 51:133-63 CrossRef
    19. Rupprechter G, Weilach C (2008) Spectroscopic studies of surface–gas interactions and catalyst restructuring at ambient pressure: mind the gap. J Phys Condens Matter 20:184019 CrossRef
    20. Borasio M, de la Fuente OR, Rupprechter G, Freund HJ (2005) In situ studies of methanol decomposition and oxidation on Pd(111) by PM-IRAS and XPS spectroscopy. J Phys Chem B 109:17791-7794 CrossRef
    21. Greenler RG (1966) Infrared study of adsorbed molecules on metal surfaces by reflection techniques. J Chem Phys 44:310 CrossRef
    22. Barner BJ, Green MJ, Saez EI, Corn RM (1991) Polarization modulation Fourier-transform infrared reflectance measurements of thin-films and and monolayers at metal-surfaces utilizing real-time sampling electronics. Anal Chem 63:55-0 CrossRef
    23. Kratzer M, Tamt?gl A, Killmann J, Schennach R, Winkler A (2009) Preparation and calibration of ultrathin Zn layers on Pd(111). Appl Surf Sci 255:5755-759 CrossRef
    24. Weirum G, Kratzer M, Koch HP, Tamt?gl A, Killmann J, Bako I, Winkler A, Surnev S, Netzer FP, Schennach R (2009) Growth and desorption kinetics of ultrathin Zn layers on Pd(111). J Phys Chem C 113:9788-796 CrossRef
    25. Koch HP, Bako I, Weirum G, Kratzer M, Schennach R (2010) A theoretical study of Zn adsorption and desorption on a Pd(111) substrate. Surf Sci 604:926-31 CrossRef
    26. Moulder JF, Stickle WF, Sobol PE, Bomben KD (1995) Handbook of X-ray photoelectron spectroscopy. Physical Electronics, Inc., Eden Prairie
    27. Neyman KM, Lim KH, Chen ZX, Moskaleva LV, Bayer A, Reindl A, Borgmann D, Denecke R, Steinrück HP, R?sch N (2007) Microscopic models of PdZn alloy catalysts: structure and reactivity in methanol decomposition. PCCP 9:3470-482 CrossRef
    28. Friedrich M, Ormeci A, Grin Y, Armbruster M (2010) PdZn or ZnPd: charge transfer and Pd–Pd bonding as the driving force for the tetragonal distortion of the cubic crystal structure. Z Anorg Allg Chem 636:1735-739 CrossRef
    29. Zemlyanov D, Aszalos-Kiss B, Kleimenov E, Teschner D, Zafeiratos S, H?vecker M, Knop-Gericke A, Schl?gl R, Gabasch H, Unterberger W, Hayek K, Kl?tzer B (2006) In situ XPS study of Pd(111) oxidation. Part 1: 2D oxide formation in 10??mbar O2. Surf Sci 600:983-94 CrossRef
    30. Gabasch H, Unterberger W, Hayek K, Kl?tzer B, Kleimenov E, Teschner D, Zafeiratos S, H?vecker M, Knop-Gericke A, Schl?gl R, Han J, Ribeiro FH, Aszalos-Kiss B, Curtin T, Zemlyanov D (2006) In situ XPS study of Pd(111) oxidation at elevated pressure. Part 2: palladium oxidation in the 10??mbar range. Surf Sci 600:2980-989 CrossRef
    31. Stadlmayr W, Penner S, Klotzer B, Memmel N (2009) Growth, thermal stability and structure of ultrathin Zn-layers on Pd(111). Surf Sci 603:251-55 CrossRef
    32. Huang Y, Ding W, Chen Z-X (2010) Effect of Zn on the adsorption of CO on Pd(111). J Chem Phys 133:214702 CrossRef
    33. Rodriguez JA (1996) Physical and chemical properties of bimetallic surfaces. Surf Sci Rep 24:225-87 CrossRef
    34. Weilach C, Kozlov SM, Holzapfel HH, F?ttinger K, Neyman KM, Rupprechter G (2012) Geometric arrangement of components in bimetallic PdZn/Pd(111) surfaces modified by CO adsorption: a combined study by density functional calculations, polarization-modulated infrared reflection absorption spectroscopy, and temperature-programmed desorption. J Phys Chem C 116:18768-8778
    35. Conant T, Karim AM, Lebarbier V, Wang Y, Girgsdies F, Schl?gl R, Datye A (2008) Stability of bimetallic Pd–Zn catalysts for the steam reforming of methanol. J Catal 257:64-0 CrossRef
    36. Stadlmayr W, Rameshan C, Weilach C, Lorenz H, H?vecker M, Blume R, Rocha T, Teschner D, Knop-Gericke A, Zemlyanov D, Penner S, Schl?gl R, Rupprechter G, Kl?tzer B, Memmel N (2010) Temperature-induced modifications of PdZn layers on Pd(111). J Phys Chem C 114:10850-0856 CrossRef
    37. Redhead PA (1962) Thermal desorption of gases. Vacuum 12:203-11 CrossRef
    38. Guo X, Yates JT (1989) Dependence of effective desorption kinetic parameters on surface coverage and adsorption temperature: CO on Pd(111). J Chem Phys 90:6761-766 CrossRef
    39. Tamtogl A, Kratzer M, Killman J, Winkler A (2008) Adsorption/desorption of H2 and CO on Zn-modified Pd(111). J Chem Phys. 129:224706 CrossRef
    40. Weirum G, Kratzer M, Koch H, Tamtoegl A, Killmann J, Bako I (2009) Growth and desorption kinetics of ultrathin Zn layers on Pd(111). J Phys Chem C 113:9788 CrossRef
    41. de la Fuente OR, Borasio M, Galletto P, Rupprechter G, Freund HJ (2004) The influence of surface defects on methanol decomposition on Pd(111) studied by XPS and PM-IRAS. Surf Sci 566-68:740-45 CrossRef
    42. Borasio M, Rodriguez de la Fuente O, Rupprechter G, Freund H-J (2005) In situ studies of methanol decomposition and oxidation on Pd(111) by PM-IRAS and XPS spectroscopy. J Phys Chem B 109:17791-7794 CrossRef
    43. Baeumer M, Libuda J, Neyman KM, Roesch N, Rupprechter G, Freund HJ (2007) Adsorption and reaction of methanol on supported palladium catalysts: microscopic-level studies from ultrahigh vacuum to ambient pressure conditions. PCCP 9:3541-558 CrossRef
    44. Demirci E, Winkler A (2008) Quantitative determination of reaction products by in-line thermal desorption spectroscopy: the system methanol/Pd(111). J Vac Sci Technol A 26:78-2 CrossRef
    45. Chen ZX, Neyman KM, Lim KH, R?sch N (2004) CH3O decomposition on PdZn(111), Pd(111), and Cu(111): a theoretical study. Langmuir 20:8068-077 CrossRef
    46. Liu S, Takahashi K, Ayabe M (2003) Hydrogen production by oxidative methanol reforming on Pd/ZnO catalyst: effects of Pd loading. Catal Today 87:247-53 CrossRef
    47. Dagle RA, Platon A, Palo DR, Datye AK, Vohs JM, Wang Y (2008) PdZnAl catalysts for the reactions of water-gas-shift, methanol steam reforming, and reverse-water-gas-shift. Appl Catal A 342:63-8 CrossRef
    48. Kawamura Y, Yahata T, Igarashi A (2010) Improvement of performance of palladium-based catalyst for small methanol reformer. Chem Eng Sci 65:201-07 CrossRef
    49. Neyman KM, Lim KH, Chen Z-X, Moskaleva LV, Bayer A, Reindl A, Borgmann D, Denecke R, Steinruck H-P, Rosch N (2007) Microscopic models of PdZn alloy catalysts: structure and reactivity in methanol decomposition. PCCP 9:3470-482 CrossRef
    50. Morkel M, Kaichev VV, Rupprechter G, Freund HJ, Prosvirin IP, Bukhtiyarov VI (2004) Methanol dehydrogenation and formation of carbonaceous overlayers on Pd(111) studied by high-pressure SFG and XPS spectroscopy. J Phys Chem B 108:12955-2961 CrossRef
    51. Morkel M, Rupprechter G, Freund H-J (2005) Finite size effects on supported Pd nanoparticles: interaction of hydrogen with CO and C2H4. Surf Sci 588:L209–L219 CrossRef
  • 作者单位:H. H. Holzapfel (1)
    A. Wolfbeisser (1)
    C. Rameshan (1)
    C. Weilach (1)
    G. Rupprechter (1)

    1. Institute of Materials Chemistry, Vienna University of Technology, Getreidemarkt 9/BC/01, 1060, Vienna, Austria
  • ISSN:1572-9028
文摘
The formation and stability of PdZn/Pd(111) surface alloys have been studied, with emphasis on their interaction with CO, methanol and D2O, applying complementary techniques such as low energy electron diffraction, X-ray photoelectron spectroscopy, temperature programmed desorption (TPD), and polarization–modulation infrared reflection absorption spectroscopy. PdZn surface alloys represent well-suited model systems for technological methanol steam reforming (MSR) catalysts. It could be shown that upon Zn deposition on Pd(111) at or below room temperature non-interacting Zn layers are formed first, that subsequently transform to PdZn surface alloys upon annealing above 473?K. At annealing temperatures above approximately 623?K the surface alloy starts to decompose, finally restoring the clean Pd(111) surface. TPD spectra reveal that methanol was decomposing to a significant amount on Pd(111), yielding CO and CHx (apart from H2), a process that did not occur on the PdZn surface alloys (i.e. methanol desorbed molecularly). This difference in part explains the improved catalytic properties (selectivity and stability) of PdZn catalysts for the MSR reaction.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700