Growth and photoemission spectroscopic studies of ultrathin noble metal films on graphite
详细信息    查看全文
  • 作者:S K MAHATHA ; KRISHNAKUMAR S R MENON
  • 关键词:Graphite ; noble metals ; angle ; resolved photoemission spectroscopy ; quantum well states. ; 79.60.?i ; 73.20.At ; 81.05.uf ; 81.15.?z
  • 刊名:Pramana
  • 出版年:2015
  • 出版时间:June 2015
  • 年:2015
  • 卷:84
  • 期:6
  • 页码:1011-1022
  • 全文大小:2,427 KB
  • 参考文献:[1]I Matsuda, H W Yeom, T Tanikawa, K Tono, T Nagao, S Hasegawa and T Ohta, Phys. Rev. B 63, 125325 (2001)
    [2]I Matsuda, T Ohta and H W Yeom, Phys. Rev. B 65, 085327 (2002)
    [3]T Hirahara, T Nagao, I Matsuda, G Bihlmayer, E V Chulkov, Yu M Koroteev and S Hasegawa, Phys. Rev. B 75, 035422 (2007)
    [4]J H Dil, J W Kim, T. Kampen, K Horn and A R H F Ettema, Phys. Rev. B 73, 161308 (2006)
    [5]Z Klusek, J Balcerski, W Olejniczak and P Kobierski, Electron Technol. 31, 512 (1998)
    [6]S Y Zhou, G-H Gweon, C D Spataru, J Graf, D-H Lee, Steven G Louie and A Lanzara, Phys. Rev. B 71, 161403 (2005)
    [7]R C Tatar and S Rabii Phys. Rev. B 25, 4126 (1982)
    [8]S Y Zhou, G-H Gweon and A Lanzara, Ann. Phys. 321, 1730 (2006)
    [9]A R Law, M T Johnson and H P Hughes, Phys. Rev. B 34, 4289 (1986)
    [10]A H Castro Neto, F Guinea, N M R Peres, K S Novoselov and A K Geim, Rev. Mod. Phys. 81, 109 (2009)
    [11]K S Novoselov, A K Geim, S V Morosov, D Jiang, Y Zhang, S V Dubonos, I V Grigorieva and A A Firsov, Science 306, 666 (2004)
    [12]T Hayakawa, H Yasumatsu and T Kondow, Eur. Phys. J. D 52, 95 (2009)
    [13]G M Francis, I M Goldby, L Kuipers, B von Issendorff and R E Palmer, J. Chem. Soc., Dalton Trans., 5, 665 (1996)
    [14]M L Bortz, F S Ohuchi and B A Parkinson, Surf. Sci. 223, 285 (1989)
    [15]G Nicolay, R Claessen, F Reinert, V N Strocov, S Hüfner, H Gao, U Hartmann and E Buchar, Surf. Sci. 432, 95 (1999)
    [16]S K Mahatha and Krishnakumar S R Menon, J. Phys.: Condens. Matter 25, 115501 (2013)
    [17]S K Mahatha and Krishnakumar S R Menon, J. Electron Spectrosc. Relat. Phenom. 193, 43 (2014)
    [18]W Jaegermann, C Pettenkofer and B A Parkinson, Phys. Rev. B 42, 7487 (1990)
    [19]A Klein, C Pettenkofer, W Jaegermann, M Lux-Steiner and E Bucher, Surf. Sci. 321, 19 (1994)
    [20]F Patthey and W-D Schneider, Phys. Rev. B 50, 17560 (1994)
    [21]E Ganz, K Sattler and J Clarke, Phys. Rev. Lett. 60, 1856 (1988)
    [22]E Ganz, K Sattler and J Clarke, J. Vac. Sci. Technol. A 6, 419 (1988)
    [23]E Ganz, K Sattler and J Clarke, Surf. Sci. 219, 33 (1989)
    [24]A Humbert, M Dayez, S Sangay, C Chapon and C R Henry, J. Vac. Sci. Technol. A 8, 311 (1990)
    [25]S K Mahatha and Krishnakumar S R Menon, Curr. Sci. 98, 759 (2010)
    [26]S K Mahatha and Krishnakumar S R Menon, J. Phys.: Cond. Matter 24, 305502 (2012)
    [27]S K Mahatha, Krishnakumar S R Menon and T Balasubramanian, Phys. Rev. B 84, 113106 (2011)
    [28]S K Mahatha and Krishnakumar S R Menon, Surf. Sci. 606, 1705 (2012)
    [29]M Kralj, A Siber, P Pervan, M Milun, T Valla, P D Johnson and D P Woodruff, Phys Rev. B 64, 085411 (2001)
    [30]P Moras and C Carbone, J. Phys.: Condens. Matter 21, 355502 (2009)
    [31]P Moras, D Topwal, P M Sheverdyaeva, L Ferrari, J Fujii, G Bihlmayer, S Blügel and C Carbone, Phys. Rev. B 80, 205418 (2009)
    [32]V M Trontl, P Pervan and M Milun, Surf. Sci. 603, 125 (2009)
    [33]D Topwal, U Manju, D Pacilé, M Papagno, D Wortmann, G Bihlmayer, S Blügel and C Carbone, Phys. Rev. B 86, 085419 (2012)
    [34]Q Jiang, H M Lu and M Zhao, J. Phys.: Condens. Matter 16, 521 (2004)
    [35]W F Egelhoff Jr and G G Tibbetts, Phys. Rev. B 19, 5028 (1979)
    [36]U Busolt, E Cottancin, L Socaciu, H Rohr, T Leisner and L Woste, Eur. Phys. J. D 16, 297 (2001)
    [37]A M Shikin, O Rader, W Gudat, G V Prudnikova and V K Adamchuk, Surf. Rev. Lett. 9, 1375 (2002)
    [38]I N Yakovkin, Eur. Phys. J. B (2012), DOI: 10.-140/?epjb/-e2012-20854-3
    [39]E Hüger and K Osuch, Phys. Rev. B 68, 205424 (2003)
    [40]S Ogawa, S Heike, H Takahashi and T Hashizume, Phys. Rev. B 75, 115319 (2007)
    [41]G Nicolay, F Reinert, S Hüfner and P Blaha, Phys. Rev. B 65, 033407 (2001)
    [42]S LaShell, B A McDougall and E Jensen, Phys. Rev. Lett. 77, 3419 (1996)
    [43]P H?pfner, J Sch?fer, A Fleszar, S Meyer, C Blumenstein, T Schramm, M He?mann, X Cui, L Patthey, W Hanke and R Claessen, Phys. Rev. B 83, 235435 (2011)
    [44]Yu S Dedkov, E N Voloshina and M Fonin, Surf. Sci. 600, 4328 (2006)
  • 作者单位:S K MAHATHA (1)
    KRISHNAKUMAR S R MENON (1)

    1. Surface Physics and Material Science Division, Saha Institute of Nuclear Physics, 1/AF Bidhan Nagar, Kolkata, 700 064, India
  • 刊物类别:Physics and Astronomy
  • 刊物主题:Physics
    Physics
    Astronomy
    Astrophysics
  • 出版者:Springer India
  • ISSN:0973-7111
文摘
Growth of Cu, Ag and Au thin films on graphite(0 0 0 1) surface and possible formation of quantum well (QW) states originating due to the confinement of thin film sp electrons within the band gap of graphite along ΓM symmetry direction are investigated using low-energy electron diffraction (LEED) and angle-resolved photoemission spectroscopy (ARPES). Higher surface diffusivity and surface energy of Cu on graphite surface led to cluster growth and does not reveal any quantum size effect, while Ag and Au films grow epitaxially in spite of large lattice mismatch. However, better surface ordering has been achieved by growing Ag and Au at low temperature (LT), followed by room-temperature (RT) annealing which are evident from LEED and the presence of sharp Shockley-type surface state (SS) at Fermi level (E F). ARPES study of Ag films on graphite does not show any QW states, whereas Au films demonstrate a very sharp SS, Au bulk bands and well-resolved QW states or resonances. The observed low in-plane dispersions of these Au QW states or resonances are compared with the dispersions obtained in the previous Au QW state studies as well as for free-standing Au films.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700