Evidence to support mitochondrial neuroprotection, in severe traumatic brain injury
详细信息    查看全文
  • 作者:Shyam Gajavelli ; Vishal K. Sinha…
  • 关键词:Mitochondrial dynamics ; Hypoxia ; Cyclosporine A ; Mitochondrial dysfunction ; Penetrating traumatic brain injury ; Secondary brain injury ; KTP
  • 刊名:Journal of Bioenergetics and Biomembranes
  • 出版年:2015
  • 出版时间:April 2015
  • 年:2015
  • 卷:47
  • 期:1-2
  • 页码:133-148
  • 全文大小:1,654 KB
  • 参考文献:1. Adamczak SE, de Rivero Vaccari JP, Dale G, Brand FJ 3rd, Nonner D, Bullock MR et al (2014) Pyroptotic neuronal cell death mediated by the AIM2 inflammasome. J Cereb Blood Flow Metab 34(4):621-29. doi:10.1038/jcbfm.2013.236
    2. Alessandri B, Rice AC, Levasseur J, DeFord M, Hamm RJ, Bullock MR (2002) Cyclosporin a improves brain tissue oxygen consumption and learning/memory performance after lateral fluid percussion injury in rats. J Neurotrauma 19(7):829-41. doi:10.1089/08977150260190429
    3. Alessandri BGM, Levasseur JE, Bullock M (2009) Lactate and glucose as energy substrates and their role in traumatic brain injury and therapy. [Review]. Future Neurol 4(2):209-28. doi:10.2217/14796708.4.2.209
    4. Aminmansour B, Fard SA, Habibabadi MR, Moein P, Norouzi R, Naderan M (2014) The efficacy of cyclosporine-a on diffuse axonal injury after traumatic brain injury. Adv Biomed Res 3:35. doi:10.4103/2277-9175.125031
    5. Amo T, Sato S, Saiki S, Wolf AM, Toyomizu M, Gautier CA et al (2011) Mitochondrial membrane potential decrease caused by loss of PINK1 is not due to proton leak, but to respiratory chain defects. Neurobiol Dis 41(1):111-18. doi:10.1016/j.nbd.2010.08.027
    6. Arun P, Ariyannur PS, Moffett JR, Xing G, Hamilton K, Grunberg NE et al (2010) Metabolic acetate therapy for the treatment of traumatic brain injury. J Neurotrauma 27(1):293-98. doi:10.1089/neu.2009.0994
    7. Balan IS, Saladino AJ, Aarabi B, Castellani RJ, Wade C, Stein DM et al (2013) Cellular alterations in human traumatic brain injury: changes in mitochondrial morphology reflect regional levels of injury severity. J Neurotrauma 30(5):367-81. doi:10.1089/neu.2012.2339
    8. Barrientos A, Fontanesi F, Diaz F (2009) Evaluation of the mitochondrial respiratory chain and oxidative phosphorylation system using polarography and spectrophotometric enzyme assays. Curr Protoc Hum Genet, Chapter 19, Unit19 13, doi:10.1002/0471142905.hg1903s63
    9. Baskaya MK, Dogan A, Temiz C, Dempsey RJ (2000) Application of 2,3,5-triphenyltetrazolium chloride staining to evaluate injury volume after controlled cortical impact brain injury: role of brain edema in evolution of injury volume. J Neurotrauma 17(1):93-9
    10. Bhatt DP, Houdek HM, Watt JA, Rosenberger TA (2013) Acetate supplementation increases brain phosphocreatine and reduces AMP levels with no effect on mitochondrial biogenesis. Neurochem Int 62(3):296-05. doi:10.1016/j.neuint.2013.01.004
    11. Binder S, Corrigan JD, Langlois JA (2005) The public health approach to traumatic brain injury: an overview of CDC’s research and programs. J Head Trauma Rehabil 20(3):189-95
    12. Blaya MO, Bramlett HM, Naidoo J, Pieper AA, Dietrich WD (2014) Neuroprotective efficacy of a proneurogenic compound after traumatic brain injury. J Neurotrauma 31(5):476-86. doi:10.1089/neu.2013.3135
    13. Bough KJ, Wetherington J, Hassel B, Pare JF, Gawryluk JW, Greene JG et al (2006) Mitochondrial biogenesis in the anticonvulsant mechanism of the ketogenic diet. Ann Neurol 60(2):223-35. doi:10.1002/ana.20899
    14. Bouzat P, Sala N, Suys T, Zerlauth JB, Marques-Vidal P, Feihl F et al (2014) Cerebral metabolic effects of exogenous lactate supplementation on the injured human brain. Intensive Care Med 40(3):412-21. doi:10.1007/s00134-013-3203-6
    15. Brealey D, Karyampudi S, Jacques TS, Novelli M, Stidwill R, Taylor V et al (2004) Mitochondrial dysfunction in a long-term rodent model of sepsis and organ failure. Am J Physiol Regul Integr Comp Physiol 286(3):R491–R497. doi:10.1152/ajpregu.00432.2003
    16. Brophy GM, Mazzeo AT, Brar S, Alves OL, Bunnell K, Gilman C et al (2013) Exposure of cyclosporin a in whole blood, cerebral spinal fluid, and brain extracellular fluid dialysate in adults with traumatic brain injury. J Neurotrauma 30(17):1484-489. doi:10.1089/neu.2012.2524
    17. Bullock R, Maxwell WL, Graham DI, Teasdale GM, Adams JH (1991) Glial swelling following human cerebral contusion: an ultrastructural study. J Neurol Neurosurg Psychiatry 54(5):427-34
    18. Carpenter KL, Jalloh I, Gallagher CN, Grice P, Howe DJ, Mason A et al (2014) (13)C-labelled microdialysis studies of cerebral metabolism in TBI patients. Eur J Pharm Sci 57:87-7. doi:10.1016/j.ejps.2013.12.012
    19. Carre JE, Singer M (2008) Cellular energetic metabolism in sepsis: the need for a systems approach. Biochim Biophys Acta 1777(7-):763
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Bioorganic Chemistry
    Biochemistry
    Animal Anatomy, Morphology and Histology
    Animal Biochemistry
    Organic Chemistry
  • 出版者:Springer New York
  • ISSN:1573-6881
文摘
Traumatic brain injury (TBI) is still the leading cause of disability in young adults worldwide. The major mechanisms -diffuse axonal injury, cerebral contusion, ischemic neurological damage, and intracranial hematomas have all been shown to be associated with mitochondrial dysfunction in some form. Mitochondrial dysfunction in TBI patients is an active area of research, and attempts to manipulate neuronal/astrocytic metabolism to improve outcomes have been met with limited translational success. Previously, several preclinical and clinical studies on TBI induced mitochondrial dysfunction have focused on opening of the mitochondrial permeability transition pore (PTP), consequent neurodegeneration and attempts to mitigate this degeneration with cyclosporine A (CsA) or analogous drugs, and have been unsuccessful. Recent insights into normal mitochondrial dynamics and into diseases such as inherited mitochondrial neuropathies, sepsis and organ failure could provide novel opportunities to develop mitochondria-based neuroprotective treatments that could improve severe TBI outcomes. This review summarizes those aspects of mitochondrial dysfunction underlying TBI pathology with special attention to models of penetrating traumatic brain injury, an epidemic in modern American society.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700