Network analysis of human fMRI data suggests modular restructuring after simulated acquired brain injury
详细信息    查看全文
  • 作者:E. Ruiz Vargas ; D. G. V. Mitchell…
  • 关键词:Networks ; Modularity ; Traumatic brain injuries
  • 刊名:Medical and Biological Engineering and Computing
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:54
  • 期:1
  • 页码:235-248
  • 全文大小:1,447 KB
  • 参考文献:1.Achard S, Salvador R, Whitcher B, Suckling J, Bullmore E (2006) A resilient, low-frequency, small-world human brain functional network with highly connected association cortical hubs. J Neurosci 26(1):63–72CrossRef PubMed
    2.Alexander-Bloch A, Gogtay N, Meunier D, Birn R, Clasen L, Lalonde F, Lenroot R, Giedd J, Bullmore E (2010) Disrupted modularity and local connectivity of brain functional networks in childhood-onset schizophrenia. Front Syst Neurosci 4(October):16
    3.Aron AR, Durston S, Eagle DM, Logan GD, Stinear CM, Stuphorn V (2007) Converging evidence for a fronto-basal-ganglia network for inhibitory control of action and cognition. J Neurosci 27(44):11860–11864CrossRef PubMed
    4.Aron AR, Robbins TW, Poldrack RA (2004) Inhibition and the right inferior frontal cortex. Trends Cogn Sci 8:170–177CrossRef PubMed
    5.Bonnelle V, Ham T, Leech R, Kinnunen K, Mehta M, Greenwood R, Sharp D (2012) Salience network integrity predicts default mode network function after traumatic brain injury. Proc Natl Acad Sci USA 109(12):4690–4695CrossRef PubMed PubMedCentral
    6.Bullmore E, Sporns O (2009) Complex brain networks: graph theoretical analysis of structural and functional systems. Nat Rev Neurosci 10(3):186–198CrossRef PubMed
    7.Clark L, Blackwell AD, Aron AR, Turner DC, Dowson J, Robbins TW, Sahakian BJ (2007) Association between response inhibition and working memory in adult ADHD: A link to right frontal cortex pathology? Biol Psychiat 61(12):1395–1401CrossRef PubMed
    8.Cox RW (1996) AFNI: software for analysis and visualization of functional magnetic resonance neuroimages. Comput Biomed Res 29(3):162–173CrossRef PubMed
    9.de Haan W, van der Flier W, Koene T, Smits L, Scheltens P, Stam C (2012) Disrupted modular brain dynamics reflect cognitive dysfunction in Alzheimer’s disease. NeuroImage 59(4):3085–3093CrossRef PubMed
    10.Eguíluz VM, Chialvo DR, Cecchi GA, Baliki M, Apkarian AV (2005) Scale-free brain functional networks. Phys Rev Lett 94(1):018102CrossRef PubMed
    11.Faul M, Xu L, Wald MM, Coronado VG (2010) Traumatic brain injury in the United States: emergency department visits, hospitalizations and deaths 2002–2006. Centers for Disease Control and Prevention, National Center for Injury Prevention and Control, Atlanta
    12.Gallos LK, Sigman M, Makse HA (2012) The conundrum of functional brain networks: small-world efficiency or fractal modularity. Front Physiol 3:123CrossRef PubMed PubMedCentral
    13.Greening SG, Finger EC, Mitchell DGV (2011) Parsing decision making processes in prefrontal cortex: response inhibition, overcoming learned avoidance, and reversal learning. NeuroImage 54(2):1432–1441CrossRef PubMed
    14.Hagmann P, Cammoun L, Gigandet X, Meuli R, Honey CJ, Wedeen VJ, Sporns O (2008) Mapping the structural core of human cerebral cortex. PLoS Biol 6(7):159CrossRef
    15.He Y, Wang J, Wang L, Chen ZJ, Yan C, Yang H, Tang H, Zhu C, Gong Q, Zang Y, Evans AC (2009) Uncovering intrinsic modular organization of spontaneous brain activity in humans. PLoS One 4(4):5226CrossRef
    16.Johnson V, Stewart W, Smith D (2012) Axonal pathology in traumatic brain injury. Exp Neurol 246:35–43CrossRef PubMed PubMedCentral
    17.Joyce K, Laurienti P, Burdette J, Hayasaka S (2010) A new measure of centrality for brain networks. PLoS One 5(8):e12200CrossRef PubMed PubMedCentral
    18.Kitzbichler MG, Henson RNA, Smith ML, Nathan PJ, Bullmore ET (2011) Cognitive effort drives workspace configuration of human brain functional networks. J Neurosci 31(22):8259–8270CrossRef PubMed
    19.Knight R, Staines W, Swick D, Chao L (1999) Prefrontal cortex regulates inhibition and excitation in distributed neural networks. Acta Psychol Amst 101(2–3):159–178CrossRef PubMed
    20.Langfelder P, Bin Z, Horvath S (2008) Defining clusters from a hierarchical cluster tree: the dynamic tree cut package for R. Bioinformatics 24(5):719–720CrossRef PubMed
    21.Langlois JA, Rutland-Brown W, Wald MM (2006) The epidemiology and impact of traumatic brain injury: a brief overview. J Head Trauma Rehabil 21(5):375–378CrossRef PubMed
    22.Levin HS, Mattis S, Ruff RM, Eisenberg HM, Marshall LF, Tabaddor K, High WM Jr, Frankowski RF (1987) Neurobehavioral outcome following minor head injury: a three-center study. J Neurosurg 66(2):234–243CrossRef PubMed
    23.Maruta J, Lee S, Jacobs E, Ghajar J (2010) A unified science of concussion. Ann NY Acad Sci 1208(1):58–66CrossRef PubMed PubMedCentral
    24.Mattson AJ, Levin H (1990) Frontal lobe dysfunction following closed head injury. A review of the literature. J Nerv Ment Dis 178(5):282–291CrossRef PubMed
    25.Meunier D, Lambiotte R, Fornito A, Ersche KD, Bullmore ET (2009) Hierarchical modularity in human brain functional networks. Front Neuroinf 3:37CrossRef
    26.Mitchell D (2011) The nexus between decision making and emotion regulation: a review of convergent neurocognitive substrates. Behav Brain Res 217(1):215–231CrossRef PubMed
    27.Moussa MN, Steen MR, Laurienti PJ, Hayasaka S (2012) Consistency of network modules in resting-state fMRI connectome data. PLoS One 7(8):44428CrossRef
    28.R Development Core Team (2008) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0
    29.Raichle ME, MacLeod AM, Snyder AZ, Powers WJ, Gusnard DA, Shulman GL (2001) A default mode of brain function. Proc Natl Acad Sci USA 98(2):676–682CrossRef PubMed PubMedCentral
    30.Ravasz E, Somera A, Mongru D, Oltvai Z, Barabási A (2002) Hierarchical organization of modularity in metabolic networks. Science 297(5586):1551CrossRef PubMed
    31.Roberts AC (2006) Primate orbitofrontal cortex and adaptive behaviour. Trends Cogn Sci 10(2):83–90CrossRef PubMed
    32.Song J, Birn RM, Boly M, Meier TB, Nair VA, Meyerand ME, Prabhakaran V (2014) Age-related reorganizational changes in modularity and functional connectivity of human brain networks. Brain Connect 4(9):662–676CrossRef PubMed PubMedCentral
    33.Tagliazucchi E, Von Wegner F, Morzelewski A, Brodbeck V, Borisov S, Jahnke K, Laufs H (2013) Large-scale brain functional modularity is reflected in slow electroencephalographic rhythms across the human non-rapid eye movement sleep cycle. Neuroimage 70:327–339CrossRef PubMed
    34.Talairach J, Tournoux P (1988) Co-planar stereotaxic atlas of the human brain: 3-D proportional system—an approach to cerebral imaging. Thieme Medical Publishers, Stuttgart, New York
    35.Uehara T, Yamasaki T, Okamoto T, Koike T, Kan S, Miyauchi S, Kira J-I, Tobimatsu S (2014) Efficiency of a small-world brain network depends on consciousness level: a resting-state fmri study. Cereb Cortex 24(6):1529–1539CrossRef PubMed
    36.Vargas ER, Mitchell D, Greening S, Wahl L (2014) Topology of whole
    ain functional MRI networks: improving the truncated scale-free model. Phys A 405:151–158CrossRef
    37.Wang J, Zuo X, Dai Z, Xia M, Zhao Z, Zhao X, Jia J, Han Y, He Y (2013) Disrupted functional brain connectome in individuals at risk for alzheimer’s disease. Biol Psychiatry 73(5):472–481CrossRef PubMed
    38.Wang J, Zuo X, He Y (2010) Graph-based network analysis of resting-state functional MRI. Front Syst Neurosci 4:16PubMed PubMedCentral
    39.Zhang B, Horvath S (2005) A general framework for weighted gene co-expression network analysis. Stat Appl Genet Mol Biol 4(1):17
  • 作者单位:E. Ruiz Vargas (1)
    D. G. V. Mitchell (2) (3)
    S. G. Greening (4)
    L. M. Wahl (5)

    1. Department of Clinical Neurological Sciences, Western University, London, ON, N6G 2V4, Canada
    2. The Brain and Mind Institute, Western University, London, ON, N6A 5B7, Canada
    3. Department of Psychiatry and Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, London, ON, N6A 5B7, Canada
    4. Department of Psychology, Louisiana State University, 218 Audubon Hall, Baton Rouge, LA, 70803, USA
    5. Department of Applied Mathematics, Western University, London, ON, N6A 5B7, Canada
  • 刊物类别:Engineering
  • 刊物主题:Biomedical Engineering
    Human Physiology
    Imaging and Radiology
    Computer Applications
    Neurosciences
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1741-0444
文摘
The pathophysiology underlying neurocognitive dysfunction following mild traumatic brain injury (TBI), or concussion, is poorly understood. In order to shed light on the effects of TBI at the functional network or modular level, our research groups are engaged in the acquisition and analysis of functional magnetic resonance imaging data from subjects post-TBI. Complementary to this effort, in this paper we use mathematical and computational techniques to determine how modular structure changes in response to specific mechanisms of injury. In particular, we examine in detail the potential effects of focal contusions, diffuse axonal degeneration and diffuse microlesions, illustrating the extent to which functional modules are preserved or degenerated by each type of injury. One striking prediction of our study is that the left and right hemispheres show a tendency to become functionally separated post-injury, but only in response to diffuse microlesions. We highlight other key differences among the effects of the three modelled injuries and discuss their clinical implications. These results may help delineate the functional mechanisms underlying several of the cognitive sequelae associated with TBI.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700