Numerical study of thermodiffusion effects on boundary layer flow of nanofluids over a power law stretching sheet
详细信息    查看全文
  • 作者:Mania Goyal (1)
    Rama Bhargava (1)
  • 关键词:Nanofluid ; Stretching sheet ; Brownian motion ; Thermophoresis ; Diffusiophoresis ; FEM
  • 刊名:Microfluidics and Nanofluidics
  • 出版年:2014
  • 出版时间:September 2014
  • 年:2014
  • 卷:17
  • 期:3
  • 页码:591-604
  • 全文大小:1,025 KB
  • 参考文献:1. Awad FG, Sibanda P, Khidir AA (2013) Thermodiffusion effects on magneto-nanofluid flow over a stretching sheet. Boundary Value Probl. doi:10.1186/1687-2770-2013-136
    2. Bg OA, Bakier A, Prasad V (2009) Numerical study of free convection magnetohydrodynamic heat and mass transfer from a stretching surface to a saturated porous medium with Soret and Dufour effects. Comput Mater Sci 46(1):57鈥?5 CrossRef
    3. Blasius H (1950) The boundary layers in fluids with little friction, UNT digital library. http://digital.library.unt.edu/ark:/67531/metadc64584/
    4. Buongiorno J (2006) Convective transport in nanofluids. J Heat Transf 128(3):240鈥?50 CrossRef
    5. Chen CK, Char MI (1988) Heat transfer of a continuous, stretching surface with suction or blowing. J Math Anal Appl 135(2):568鈥?80 CrossRef
    6. Choi SUS, Eastman JA (1995) Enhancing thermal conductivity of fluids with nanoparticles in developments and applications of non-newtonian flows, ASME FED-vol. 231/MD-vol. 66:99鈥?05
    7. Choi SUS, Zhang ZG, Yu W, Lockwood FE, Grulke EA (2001) Anomalous thermal conductivity enhancement in nanotube suspensions. Appl Phys Lett 79(14):2252鈥?254 CrossRef
    8. Cortell R (2007) Viscous flow and heat transfer over a nonlinearly stretching sheet. Appl Math Comput 184(2):864鈥?73 CrossRef
    9. Cortell R (2011) Heat and fluid flow due to non-linearly stretching surfaces. Appl Math Comput 217(19):7564鈥?572 CrossRef
    10. Dettmer W, Peric D (2006) A computational framework for fluid-rigid body interaction: finite element formulation and applications. Comput Methods Appl Mech Eng 195(13鈥?6):1633鈥?666 CrossRef
    11. Dutta B, Roy P, Gupta A (1985) Temperature field in flow over a stretching sheet with uniform heat flux. Int Commun Heat Mass Transf 12:89鈥?4 CrossRef
    12. Elbashbeshy E (2001) Heat transfer over an exponentially stretching continuous surface with suction. Arch Mech 53(6):643鈥?51
    13. Goyal M, Bhargava R (2013) Boundary layer flow and heat transfer of viscoelastic nanofluids past a stretching sheet with partial slip conditions. Appl Nanosci 1鈥?. doi:10.1007/s13204-013-0254-5
    14. Gupta PS, Gupta AS (1977) Heat and mass transfer on a stretching sheet with suction or blowing. Can J Chem Eng 55(6):744鈥?46 CrossRef
    15. Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Comput Methods Appl Mech Eng 193(33鈥?5):3523鈥?540 CrossRef
    16. Khan W, Aziz A (2011) Double-diffusive natural convective boundary layer flow in a porous medium saturated with a nanofluid over a vertical plate: prescribed surface heat, solute and nanoparticle fluxes. Int J Therm Sci 50(11):2154鈥?160 CrossRef
    17. Khan W, Pop I (2010) Boundary-layer flow of a nanofluid past a stretching sheet. Int J Heat Mass Transf 53(11鈥?2):2477鈥?483 CrossRef
    18. Khan WA, Uddin MJ, Ismail AIM (2012) Effect of momentum slip on double-diffusive free convective boundary layer flow of a nanofluid past a convectively heated vertical plate, proceedings of the Institution of Mechanical Engineers. Part N J Nanoeng Nanosyst 226(3):99鈥?09
    19. Kumaran V, Ramanaiah G (1996) A note on the flow over a stretching sheet. Acta Mech 116(1鈥?):229鈥?33 CrossRef
    20. Kuznetsov A, Nield D (2010) Natural convective boundary-layer flow of a nanofluid past a vertical plate. Int J Therm Sci 49(2):243鈥?47 CrossRef
    21. Kuznetsov A, Nield D (2011) Double-diffusive natural convective boundary-layer flow of a nanofluid past a vertical plate. Int J Therm Sci 50(5):712鈥?17 CrossRef
    22. Lin YY, Lo SP (2003) Finite element modeling for chemical mechanical polishing process under different back pressures. J Mater Process Technol 140(1鈥?):646鈥?52 CrossRef
    23. Makinde O, Aziz A (2011) Boundary layer flow of a nanofluid past a stretching sheet with a convective boundary condition. Int J Therm Sci 50(7):1326鈥?332 CrossRef
    24. Mansour M, Anssary NE, Aly A (2008) Effects of chemical reaction and thermal stratification on mhd free convective heat and mass transfer over a vertical stretching surface embedded in a porous media considering Soret and Dufour numbers. Chem Eng J 145(2):340鈥?45 CrossRef
    25. Masuda H, Ebata A, Teramae K, Hishinuma N (1993) Alteration of thermal conductivity and viscosity of liquid by dispersing ultra-fine particles. Netsu Bussei 7(4):227鈥?33 CrossRef
    26. McCormack PD, Crane L (1973) Physical fluid dynamics. Academic Press, New York
    27. Nandeppanavar MM, Vajravelu K, Abel MS, Ng CO (2011) Heat transfer over a nonlinearly stretching sheet with non-uniform heat source and variable wall temperature. Int J Heat Mass Transf 54(23鈥?4):4960鈥?965 CrossRef
    28. Pop I, Ingham D (2001) Convective heat transfer: mathematical and computational modelling of viscous fluids and porous media. Elsevier, Oxford
    29. Prasad K, Vajravelu K, Datti P (2010) Mixed convection heat transfer over a non-linear stretching surface with variable fluid properties. Int J Non Linear Mech 45(3):320鈥?30
    30. Rana P, Bhargava R (2012) Flow and heat transfer of a nanofluid over a nonlinearly stretching sheet: a numerical study. Commun Nonlinear Sci Numer Simul 17(1):212鈥?26 CrossRef
    31. Reddy JN (1985) An introduction to the finite element method. McGraw-Hill Book Co, New York
    32. Sajid M, Hayat T (2008) Influence of thermal radiation on the boundary layer flow due to an exponentially stretching sheet. Int Commun Heat Mass Transf 35(3):347鈥?56 CrossRef
    33. Tsai R, Huang J (2009) Heat and mass transfer for Soret and Dufour鈥檚 effects on Hiemenz flow through porous medium onto a stretching surface. Int J Heat Mass Transf 52(9鈥?0):2399鈥?406 CrossRef
    34. Vajravelu K, Cannon JR (2006) Fluid flow over a nonlinearly stretching sheet. Appl Math Comput 181:609鈥?18 CrossRef
    35. Weaver JA, Viskanta R (1991) Natural convection due to horizontal temperature and concentration gradients. Species interdiffusion, Soret and Dufour effects. Int J Heat Mass Transf 34(12):3121鈥?133
  • 作者单位:Mania Goyal (1)
    Rama Bhargava (1)

    1. Department of Mathematics, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
  • ISSN:1613-4990
文摘
This paper deals with the triple-diffusive boundary layer flow of nanofluid over a nonlinear stretching sheet. In this model, where binary nanofluid is used, the Brownian motion, thermophoresis, and cross-diffusion are classified as the main mechanisms, which are responsible for the enhancement of the convection features of the nanofluid. The boundary layer equations governed by the partial differential equations are transformed into a set of ordinary differential equations with the help of group theory transformations, which is introduced by Blasius (The boundary layers in fluids with little friction, 1950). The variational finite element method is used to solve these ordinary differential equations. We have examined the effects of different controlling parameters, namely the Brownian motion parameter, the thermophoresis parameter, modified Dufour number, nonlinear stretching parameter, Prandtl number, regular Lewis number, Dufour Lewis number, and nanofluid Lewis number on the flow field and heat transfer characteristics. The physics of the problem is well explored for the embedded material parameters through tables and graphs. The present study has many applications in coating and suspensions, movement of biological fluids, cooling of metallic plate, melt-spinning, heat exchangers technology, and oceanography.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700