Functional analysis of a chitinase gene during the larval-nymph transition in Panonychus citri by RNA interference
详细信息    查看全文
  • 作者:Wen-Kai Xia ; Xiao-Min Shen ; Tian-Bo Ding ; Jin-Zhi Niu…
  • 关键词:Panonychus citri ; Citrus red mite ; Chitinase ; Diflubenzuron ; RNA interference
  • 刊名:Experimental and Applied Acarology
  • 出版年:2016
  • 出版时间:September 2016
  • 年:2016
  • 卷:70
  • 期:1
  • 页码:1-15
  • 全文大小:1,071 KB
  • 参考文献:Abo-Elghar GE, Fujiyoshi P, Matsumura F (2004) Significance of the sulfonylurea receptor (SUR) as the target of diflubenzuron in chitin synthesis inhibition in Drosophila melanogaster and Blattella germanica. Insect Biochem Mol Biol 34:743–752CrossRef PubMed
    Arakane Y, Muthukrishnan S (2010) Insect chitinase and chitinase-like proteins. Cell Mol Life Sci 67:201–216CrossRef PubMed
    Arakane Y, Hogenkamp DG, Zhu YC, Kramer KJ, Specht CA, Beeman RW, Kanost MR, Muthukrishnan S (2004) Characterization of two chitin synthase genes of the red flour beetle, Tribolium castaneum, and alternate exon usage in one of the genes during development. Insect Biochem Mol Biol 34:291–304CrossRef PubMed
    Bairoch A (1993) The PROSITE dictionary of sites and patterns in proteins, its current status. Nucleic Acids Res 21:3097CrossRef PubMed PubMedCentral
    Bajda S, Dermauw W, Greenhalgh R, Nauen R, Tirry L, Clark RM, Van Leeuwen T (2015) Transcriptome profiling of a spirodiclofen susceptible and resistant strain of the European red mite Panonychus ulmi using strand-specific RNA-seq. BMC Genom 16:974CrossRef
    Bolognesi R, Arakane Y, Muthukrishnan S, Kramer KJ, Terra WR, Ferreira C (2005) Sequences of cDNAs and expression of genes encoding chitin synthase and chitinase in the midgut of Spodoptera frugiperda. Insect Biochem Mol Biol 35:1249–1259CrossRef PubMed
    Boot RG, Renkema GH, Strijland A, van Zonneveld AJ, Aerts JM (1995) Cloning of a cDNA encoding chitotriosidase, a human chitinase produced by macrophages. J Biol Chem 270:26252–26256CrossRef PubMed
    Chen J, Zhang D, Yao Q, Zhang J, Dong X, Tian H, Zhang W (2010) Feeding-based RNA interference of a trehalose phosphate synthase gene in the brown planthopper, Nilaparvata lugens. Insect Mol Biol 19:777–786CrossRef PubMed
    Chen L, Yang WJ, Cong L, Xu KK, Wang JJ (2013) Molecular cloning, characterization and mRNA expression of a chitin synthase 2 gene from the oriental fruit fly, Bactrocera dorsalis (Diptera: Tephritidae). Int J Mol Sci 14:17055–17072CrossRef PubMed PubMedCentral
    Choo YM, Lee KS, Kim BY, Kim DH, Yoon HJ, Sohn HD, Jin BR (2007) A gut-specific chitinase from the mulberry longicorn beetle, Apriona germari (Coleoptera: Cerambycidae): cDNA cloning, gene structure, expression and enzymatic activity. Eur J Entomol 104:173CrossRef
    Collinge DB, Kragh KM, Mikkelsen JD, Nielsen KK, Rasmussen U, Vad K (1993) Plant chitinases. Plant J 3:31–40CrossRef PubMed
    De la Vega H, Specht C, Liu Y, Robbins P (1998) Chitinases are a multi-gene family in Aedes, Anopheles and Drosophila. Insect Mol Biol 7:233–239CrossRef PubMed
    Ding TB, Niu JZ, Yang LH, Zhang K, Dou W, Wang JJ (2013) Transcription profiling of two cytochrome P450 genes potentially involved in acaricide metabolism in citrus red mite Panonychus citri. Pestic Biochem Physiol 106:28–37CrossRef
    Dyrløv Bendtsen J, Nielsen H, von Heijne G, Brunak S (2004) Improved prediction of signal peptides: SignalP 3.0. J Mol Biol 340:783–795CrossRef
    Eichner C, Harasimczuk E, Nilsen F, Grotmol S, Dalvin S (2015) Molecular characterisation and functional analysis of LsChi2, a chitinase found in the salmon louse (Lepeophtheirus salmonis salmonis, Krøyer 1838). Exp Parasitol 151:39–48CrossRef PubMed
    Farlow JE (1976) Dimilin [1-(4-chlorophenyl)-3-(2, 6-difluorobenzoyl)-urea] on the aquatic fauna of a Louisiana coastal marsh. Ph. D. thesis, Louisiana State University and Agricultural and Mechanical College, Baton Rouge, LA
    Funkhouser JD, Aronson NN (2007) Chitinase family GH18: evolutionary insights from the genomic history of a diverse protein family. BMC Evol Biol 7:96CrossRef PubMed PubMedCentral
    Hansen JE, Lund O, Rapacki K, Brunak S (1997) O-GLYCBASE version 2.0: a revised database of O-glycosylated proteins. Nucleic Acids Res 25:278–282CrossRef PubMedCentral
    Hellemans J, Mortier G, De Paepe A, Speleman F, Vandesompele J (2007) qBase relative quantification framework and software for management and automated analysis of real-time quantitative PCR data. Genome Biol 8:R19CrossRef PubMed PubMedCentral
    Hu J, Wang C, Wang J, You Y, Chen F (2010) Monitoring of resistance to spirodiclofen and five other acaricides in Panonychus citri collected from Chinese citrus orchards. Pest Manage Sci 66:1025–1030CrossRef
    Khajuria C, Buschman LL, Chen MS, Muthukrishnan S, Zhu KY (2010) A gut-specific chitinase gene essential for regulation of chitin content of peritrophic matrix and growth of Ostrinia nubilalis larvae. Insect Biochem Mol Biol 40:621–629CrossRef PubMed
    Khila A, Grbić M (2007) Gene silencing in the spider mite Tetranychus urticae: dsRNA and siRNA parental silencing of the Distal-less gene. Dev Genes Evol 217:241–251CrossRef PubMed
    Kramer KJ, Muthukrishnan S (2009) Chitin metabolism in insects. Insect development: morphogenesis, molting and metamorphosis/edited by Lawrence I. Gilbert 4:111–144
    Kramer KJ, Corpuz L, Choi HK, Muthukrishnan S (1993) Sequence of a cDNA and expression of the gene encoding epidermal and gut chitinases of Manduca Sexta. Insect Biochem Mol Biol 23:691–701CrossRef PubMed
    Kramer KJ, Hopkins TL, Schaefer J (1995) Applications of solids NMR to the analysis of insect sclerotized structures. Insect Biochem Mol Biol 25:1067–1080CrossRef
    Kwon DH, Park JH, Lee SH (2013) Screening of lethal genes for feeding RNAi by leaf disc-mediated systematic delivery of dsRNA in Tetranychus urticae. Pestic Biochem Physiol 105:69–75CrossRef PubMed
    Leah R, Tommerup H, Svendsen I, Mundy J (1991) Biochemical and molecular characterization of three barley seed proteins with antifungal properties. J Biol Chem 266:1564–1573PubMed
    Lehane M (1997) Peritrophic matrix structure and function. Annu Rev Entomol 42:525–550CrossRef PubMed
    Lehmann PT, White L (1975) Chitin assay used to demonstrate renal localization and cortisone-enhanced growth of Aspergillus fumigatus mycelium in mice. Infect Immun 12:987–992PubMed PubMedCentral
    Li DQ, Zhang JQ, Wang Y, Liu XJ, Ma EB, Suna Y, Li S, Zhu KY, Zhang JZ (2015) Two chitinase 5 genes from Locusta migratoria: molecular characteristics and functional differentiation. Insect Biochem Mol Biol 58:46–55CrossRef PubMed
    Liu B, Jiang G, Zhang Y, Li J, Li X, Yue J, Chen F, Liu H, Li H, Zhu S, Wang J, Ran C (2011) Analysis of transcriptome differences between resistant and susceptible strains of the citrus red mite Panonychus citri (Acari: Tetranychidae). PLoS ONE 6:e28516CrossRef PubMed PubMedCentral
    Mayer R, Chen A, DeLoach J (1981) Chitin synthesis inhibiting insect growth regulators do not inhibit chitin synthase. Experientia 37:337–338CrossRef
    Meola SM, Mayer RT (1980) Inhibition of cellular proliferation of imaginal epidermal cells by diflubenzuron in pupae of the stable fly. Science 207:985–987CrossRef PubMed
    Merzendorfer H (2006) Insect chitin synthases: a review. J Comp Physiol Biochem Syst Environ Physiol 176:1–15CrossRef
    Merzendorfer H, Zimoch L (2003) Chitin metabolism in insects: structure, function and regulation of chitin synthases and chitinases. J Exp Biol 206:4393–4412CrossRef PubMed
    Michel AP, Mian MR, Davila-Olivas NH, Cañas LA (2010) Detached leaf and whole plant assays for soybean aphid resistance: differential responses among resistance sources and biotypes. J Econ Entomol 103:949–957CrossRef PubMed
    Migeon A, Dorkeld F (2012) Spider mites web. http://​www.​montpellier.​inra.​fr/​CBGP/​spmweb
    Mulder R, Gijswijt MJ (1973) The laboratory evaluation of two promising new insecticides which interfere with cuticle deposition. Pestic Sci 4:737–745CrossRef
    Muzzarelli R, Marks EP (1986) Chitin synthesis inhibitors: effects on insects and on nontarget organisms. Crit Rev Environ Sci Technol 16:141–146
    Nakabachi A, Shigenobu S, Miyagishima S (2010) Chitinase-like proteins encoded in the genome of the pea aphid, Acyrthosiphon pisum. Insect Mol Biol 19:175–185CrossRef PubMed
    Niu JZ, Liu GY, Dou W, Wang JJ (2011) Susceptibility and activity of glutathione S-transferases in nine field populations of Panonychus citri (Acari: Tetranychidae) to pyridaben and azocyclotin. Fla Entomol 94:321–329CrossRef
    Niu JZ, Dou W, Ding TB, Shen GM, Zhang K, Smagghe G, Wang JJ (2012a) Transcriptome analysis of the citrus red mite, Panonychus citri, and its gene expression by exposure to insecticide/acaricide. Insect Mol Biol 21:422–436CrossRef PubMed
    Niu JZ, Dou W, Ding TB, Yang LH, Shen GM, Wang JJ (2012b) Evaluation of suitable reference genes for quantitative RT-PCR during development and abiotic stress in Panonychus citri (McGregor) (Acari: Tetranychidae). Mol Biol Rep 39:5841–5849CrossRef PubMed
    Pan Y, Lü P, Wang Y, Yin L, Ma H, Ma G, Chen K, He Y (2012) In silico identification of novel chitinase-like proteins in the silkworm, Bombyx mori, genome. J Insect Sci 12:150CrossRef PubMed PubMedCentral
    Peters W (1992) Peritrophic membranes. Zoophysiology, vol 30. Springer, BerlinCrossRef
    Pitino M, Coleman AD, Maffei ME, Ridout CJ, Hogenhout SA (2011) Silencing of aphid genes by dsRNA feeding from plants. PLoS ONE 6:e25709CrossRef PubMed PubMedCentral
    Suzuki M, Fujimoto W, Goto M, Morimatsu M, Syuto B, Iwanaga T (2002) Cellular expression of gut chitinase mRNA in the gastrointestinal tract of mice and chickens. J Histochem Cytochem 50:1081–1089CrossRef PubMed
    Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739CrossRef PubMed PubMedCentral
    Upadhyay SK, Chandrashekar K, Thakur N, Verma PC, Borgio JF, Singh PK, Tuli R (2011) RNA interference for the control of whiteflies (Bemisia tabaci) by oral route. J. Biosci (Bangalore) 36:153–161CrossRef
    Van Leeuwen T, Vontas J, Tsagkarakou A, Dermauw W, Tirry L (2010) Acaricide resistance mechanisms in the two-spotted spider mite Tetranychus urticae and other important Acari: a review. Insect Biochem Mol Biol 40:563–572CrossRef PubMed
    Xi Y, Pan P, Ye Y, Yu B, Xu H, Zhang C (2015) Chitinase-like gene family in the brown planthopper, Nilaparvata lugens. Insect Mol Biol 24:29–40CrossRef PubMed
    Xia WK, Ding TB, Niu JZ, Liao CY, Zhong R, Yang WJ, Liu B, Dou W, Wang JJ (2014) Exposure to diflubenzuron results in an up-regulation of a chitin synthase 1 gene in citrus red mite, Panonychus citri (Acari: Tetranychidae). Int J Mol Sci 15:3711–3728CrossRef PubMed PubMedCentral
    Xu J, Deng X (2008) Current status of citrus industry in China. Citrus Industry in China. China Agriculture Press, Beijing, pp 18–24
    Yang WJ, Xu KK, Zhang RY, Dou W, Wang JJ (2013) Transcriptional regulation of a chitinase gene by 20-hydroxyecdysone and starvation in the oriental fruit fly, Bactrocera dorsalis. Int J Mol Sci 14:20048–20063CrossRef PubMed PubMedCentral
    Zhang JZ, Zhu KY (2006) Characterization of a chitin synthase cDNA and its increased mRNA level associated with decreased chitin synthesis in Anopheles quadrimaculatus exposed to diflubenzuron. Insect Biochem Mol Biol 36:712–725CrossRef PubMed
    Zhang JZ, Zhang X, Arakane Y, Muthukrishnan S, Kramer KJ, Ma EB, Zhu KY (2011a) Identification and characterization of a novel chitinase-like gene cluster (AgCht5) possibly derived from tandem duplications in the African malaria mosquito, Anopheles gambiae. Insect Biochem Mol Biol 41:521–528CrossRef PubMed
    Zhang JZ, Zhang X, Arakane Y, Muthukrishnan S, Kramer KJ, Ma EB, Zhu KY (2011b) Comparative genomic analysis of chitinase and chitinase-like genes in the african malaria mosquito (Anopheles gambiae). PLoS ONE 6:e19899CrossRef PubMed PubMedCentral
    Zhang D, Chen J, Yao Q, Pan Z, Chen J, Zhang W (2012) Functional analysis of two chitinase genes during the pupation and eclosion stages of the beet armyworm Spodoptera exigua by RNA interference. Arch Insect Biochem Physiol 79:220–234CrossRef PubMed
    Zhang K, Niu JZ, Ding TB, Dou W, Wang JJ (2013) Molecular characterization of two carboxylesterase genes of the citrus red mite, Panonychus citri (Acari: Tetranychidae). Arch Insect Biochem Physiol 82:213–226CrossRef PubMed
    Zhu QS, Arakane Y, Banerjee D, Beeman RW, Kramer KJ, Muthukrishnan S (2008a) Domain organization and phylogenetic analysis of the chitinase-like family of proteins in three species of insects. Insect Biochem Mol Biol 38:452–466CrossRef PubMed
    Zhu QS, Arakane Y, Beeman RW, Kramer KJ, Muthukrishnan S (2008b) Functional specialization among insect chitinase family genes revealed by RNA interference. Proc Natl Acad Sci USA 105:6650–6655CrossRef PubMed PubMedCentral
  • 作者单位:Wen-Kai Xia (1)
    Xiao-Min Shen (1)
    Tian-Bo Ding (1)
    Jin-Zhi Niu (1)
    Rui Zhong (1)
    Chong-Yu Liao (1)
    Ying-Cai Feng (1)
    Wei Dou (1)
    Jin-Jun Wang (1)

    1. Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, 400716, China
  • 刊物主题:Entomology; Animal Systematics/Taxonomy/Biogeography; Animal Genetics and Genomics; Animal Ecology; Life Sciences, general;
  • 出版者:Springer Netherlands
  • ISSN:1572-9702
  • 卷排序:70
文摘
Chitinases are hydrolytic enzymes that are required for chitin degradation and reconstruction in arthropods. In this study, we report a cDNA sequence encoding a putative chitinase (PcCht1) from the citrus red mite, Panonychus citri. The PcCht1 (564 aa) possessed a signal peptide, a conserver domain, and a chitin-binding domain. Structural and phylogenetic analyses found that PcCht1 had high sequence similarity to chitinases in Tetranychus urticae. Real-time quantitative PCR analyses showed that the transcript levels of PcCht1 peaked periodically in larval and nymph stages. Moreover, significant increase of PcCht1 transcript level in the larvae was observed upon the exposure of diflubenzuron. In contrast, exposures of the larvae to diflubenzuron resulted in the decreased chitin content. Furthermore, through a feeding-based RNA interference approach, we were able to reduce the PcCht1 transcript level by 59.7 % in the larvae, and consequently the treated larvae showed a very low molting rate compared with the control. Our results expanded the understanding of the important role of PcCht1 in the growth and development of P. citri. Keywords Panonychus citri Citrus red mite Chitinase Diflubenzuron RNA interference

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700