Calibration of a multi-phase field model with quantitative angle measurement
详细信息    查看全文
  • 作者:Johannes Hötzer ; Oleg Tschukin ; Marouen Ben Said…
  • 刊名:Journal of Materials Science
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:51
  • 期:4
  • 页码:1788-1797
  • 全文大小:1,130 KB
  • 参考文献:1.Boettinger W, Warren J, Beckermann C, Karma A (2002) Phase-field simulation of solidification 1. Ann Rev Mater Res 32(1):163–194CrossRef
    2.Cogswell DA, Carter WC (2011) Thermodynamic phase-field model for microstructure with multiple components and phases: the possibility of metastable phases. Phys Rev E 83(6):061602–061615. doi:10.​1088/​0965-0393/​17/​7/​073001 CrossRef
    3.Nestler B, Choudhury A (2011) Phase-field modeling of multi-component systems. Curr Opin Solid State Mater Sci 15(3):93–105CrossRef
    4.Cahn JW, Hilliard JE (1958) Free energy of a nonuniform system. I. Interfacial free energy. J Chem Phys 28(2):258–267CrossRef
    5.Kobayashi R (1993) Modeling and numerical simulations of dendritic crystal growth. Phys D 63:410–423CrossRef
    6.Langer JS (1986) Models of pattern formation in first-order phase transitions. Directions in condensed matter. World Scientific, Singapore, pp 165–186
    7.Kim SG, Kim WT, Suzuki T (1999) Phase-field model for binary alloys. Phys Rev E 60:7186–7198CrossRef
    8.Plapp M (2011) Unified derivation of phase-field models for alloy solidification from a grand-potential functional. Phys Rev E 84:031601–031616CrossRef
    9.Garcke H, Nestler B, Stoth B (1999) A multiphase field concept: numerical simulations of moving phase boundaries and multiple junctions. SIAM J Appl Math 60(1):295–315. doi:10.​1137/​S003613999833489​5 CrossRef
    10.Nestler B, Garcke H, Stinner B (2005) Multicomponent alloy solidification: phase-field modeling and simulations. Phys Rev E 71:041609–041615CrossRef
    11.Chen LQ, Yang W (1994) Computer simulation of the domain dynamics of a quenched system with a large number of nonconserved order parameters: the grain-growth kinetics. Phys Rev B 50(21):15752–15759CrossRef
    12.Fan D, Chen LQ (1997) Computer simulation of grain growth using a continuum field model. Acta Mater 45(2):611–622CrossRef
    13.Garcke H, Nestler B, Stoth B (1998) On anisotropic order parameter models for multi-phase systems and their sharp interface limits. Phys D 115(1):87–108CrossRef
    14.Steinbach I, Pezzolla F (1999) A generalized field method for multiphase transformations using interface fields. Phys D 134(4):385–393CrossRef
    15.Steinbach I, Pezzolla F, Nestler B, Seeßelberg M, Prieler R, Schmitz G, Rezende J (1996) A phase field concept for multiphase systems. Phys D 94(3):135–147CrossRef
    16.Warren JA, Kobayashi R, Lobkovsky AE, Carter WC (2003) Extending phase field models of solidification to polycrystalline materials. Acta Mater 51(20):6035–6058CrossRef
    17.Lu Y, Zhang L, Zhou Y, Chen Z, Zhang J (2013) Phase-field study for texture evolution in polycrystalline materials under applied stress. J Mater Sci Technol 29(10):999–1004CrossRef
    18.Ravash H, Vleugels J, Moelans N (2014) Three-dimensional phase-field simulation of microstructural evolution in three-phase materials with different diffusivities. J Mater Sci 49(20):7066–7072. doi:10.​1007/​s10853-014-8411-0 CrossRef
    19.Ahmed K, Allen T, El-Azab A (2015) Phase field modeling for grain growth in porous solids. J Mater Sci. doi:10.​1007/​s10853-015-9107-9
    20.McKenna I, Gururajan M, Voorhees P (2009) Phase field modeling of grain growth: effect of boundary thickness, triple junctions, misorientation, and anisotropy. J Mater Sci 44(9):2206–2217. doi:10.​1007/​s10853-008-3196-7 CrossRef
    21.Moelans N, Wendler F, Nestler B (2009) Comparative study of two phase-field models for grain growth. Comput Mater Sci 46(2):479–490CrossRef
    22.Johnson A, Voorhees P (2014) A phase-field model for grain growth with trijunction drag. Acta Mater 67:134–144CrossRef
    23.Gottstein G, King A, Shvindlerman L (2000) The effect of triple-junction drag on grain growth. Acta Mater 48(2):397–403CrossRef
    24.Caroli C, Misbah C (1997) On static and dynamical Young’s condition at a trijunction. J Phys I 7(10):1259–1265
    25.Guo W, Steinbach I (2010) Multi-phase field study of the equilibrium state of multi-junctions. Int J Mater Res 101(4):382–388. doi:10.​3139/​146.​110298 CrossRef
    26.Holm E, Srolovitz DJ, Cahn J (1993) Microstructural evolution in two-dimensional two-phase polycrystals. Acta Metall Mater 41(4):1119–1136CrossRef
    27.Wheeler AA, Boettinger WJ, McFadden GB (1992) Phase-field model for isothermal phase transitions in binary alloys. Phys Rev E 45:7424–7451CrossRef
    28.Choudhury A, Nestler B (2012) Grand-potential formulation for multicomponent phase transformations combined with thin-interface asymptotics of the double-obstacle potential. Phys Rev E 85:021602–021618CrossRef
    29.Moelans N, Blanpain B, Wollants P (2008) An introduction to phase-field modeling of microstructure evolution. Calphad 32(2):268–294CrossRef
    30.Vondrous A, Selzer M, Hötzer J, Nestler B (2014) Parallel computing for phase-field models. Int J High Perform C 28(1):1–12. doi:10.​1177/​1094342013490972​ CrossRef
    31.Stinner B, Nestler B, Garcke H (2004) A diffuse interface model for alloys with multiple components and phases. SIAM J Appl Math 64(3):775–799CrossRef
    32.Chen Y, Ye X (2011) Projection onto a simplex, arXiv preprint arXiv:​1101.​6081 , pp 1–7
    33.Wendler F, Becker JK, Nestler B, Bons PD, Walte NP (2009) Phase-field simulations of partial melts in geological materials. Comput Geosci 35(9):1907–1916CrossRef
    34.Adams BL, Ta’Asan S, Kinderlehrer D, Livshits I, Mason D, Wu CT, Mullins W, Rohrer G, Rollett A, Saylor D (1999) Extracting grain boundary and surface energy from measurement of triple junction geometry. Interface Sci 7(3–4):321–337CrossRef
    35.Stinner B (2006) Derivation and analysis of a phase field model for alloy solidification, Dissertation, University of Regensburg
  • 作者单位:Johannes Hötzer (1) (2)
    Oleg Tschukin (2)
    Marouen Ben Said (1)
    Marco Berghoff (1)
    Marcus Jainta (1)
    Georges Barthelemy (1)
    Nikolay Smorchkov (1)
    Daniel Schneider (1)
    Michael Selzer (1) (2)
    Britta Nestler (1) (2)

    1. Institut für Angewandte Materialien, Computational Materials Science (IAM-CMS), Karlsruhe Institute of Technology (KIT), Haid-und-Neu-Str. 7, 76131, Karlsruhe, Germany
    2. Institute of Materials and Processes, Karlsruhe University of Applied Sciences, Moltkestrasse 30, 76133, Karlsruhe, Germany
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Materials Science
    Characterization and Evaluation Materials
    Polymer Sciences
    Continuum Mechanics and Mechanics of Materials
    Crystallography
    Mechanics
  • 出版者:Springer Netherlands
  • ISSN:1573-4803
文摘
Over the last years, the phase-field method has been established to model capillarity-induced microstructural evolution in various material systems. Several phase-field models were introduced and different studies proved that the microstructure evolution is crucially affected by the triple junction (TJ’s) mobilities as well as the evolution of the dihedral angles. In order to understand basic mechanisms in multi-phase systems, we are interested in the time evolution of TJ’s, especially in the contact angles in these regions. Since the considered multi-phase systems consist of a high number of grains, it is not feasible to measure the angles at all TJ’s by hand. In this work, we present a method enabling the localization of TJ’s and the measurement of dihedral contact angles in the diffuse interface inherent in the phase-field model. Based on this contact angle measurement method, we show how to calibrate the phase-field model in order to satisfy Young’s law for different contact angles.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700