Geometry and Self-stress of Single-Wall Carbon Nanotubes and Graphene via a Discrete Model Based on a 2nd-Generation REBO Potential
详细信息    查看全文
文摘
The main purpose of this paper is to evaluate the self-stress state of single-walled Carbon NanoTubes (CNTs) and Flat Graphene Strips (FGSs) in their natural equilibrium state, that is, the state prior to the application of external loads. We model CNTs as discrete elastic structures, whose shape and volume changes are governed by a Reactive Empirical Bond-Order (REBO) interatomic potential of second generation. The kinematical variables we consider are bond lengths, bond angles, and dihedral angles; to changes of each of these variables we associate a work-conjugate nanostress. To determine the self-stress state in a given CNT, we formulate the load-free equilibrium problem as a minimum problem for the interatomic potential, whose solution yields the equilibrium nanostresses; next, by exploiting the nonlinear constitutive dependence we derive for nanostresses in terms of a list of kinematical variables, we determine the equilibrium values of the latter; finally, from the equilibrium values of the kinematical variables we deduce the natural geometry and, in particular, the natural radius.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700