Facile electrochemical growth of nanostructured copper phthalocyanine thin film via simultaneous anodic oxidation of copper and dilithium phthalocyanine for photoelectrochemical hydrogen evolution
详细信息    查看全文
  • 作者:R. S. Vishwanath ; Sakthivel Kandaiah
  • 关键词:Photoelectrochemical hydrogen evolution ; Electrodeposition ; Photocathodes ; Copper phthalocyanine ; Dilithium phthalocyanine
  • 刊名:Journal of Solid State Electrochemistry
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:20
  • 期:3
  • 页码:767-773
  • 全文大小:1,258 KB
  • 参考文献:1.Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37–38CrossRef
    2.Graetzel M (2003) Dye-sensitized solar cells. J Photochem Photobiol C 4:145–153CrossRef
    3.Walter MG, Warren EL, McKone JR, Boettcher SW, Mi Q, Santori EA, Lewis NS (2010) Solar water splitting cells. Chem Rev 110:6446–6473CrossRef
    4.Tong H, Ouyang S, Bi Y, Umezawa N, Oshikiri M (2012) Nano-photocatalytic materials: possibility and challenges. Adv Mater 24:229–251CrossRef
    5.Krol RVD, Graetzel M (2012) Photoelectrochemical hydrogen production. Springer Science+Business Media 102:3–11
    6.Lewis NS (2005) Chemical control of charge transfer and recombination at semiconductor photoelectrode surfaces. Inorg Chem 44:6900–6911CrossRef
    7.Perez MD, Borek C, Forrest SR, Thompson ME (2009) Molecular and morphological influences on the open circuit voltages of organic photovoltaic devices. J Am Chem Soc 131:9281–9286CrossRef
    8.Tada A, Geng Y, Wei Q, Hashimoto K, Tajima K (2011) Tailoring organic heterojunction interfaces in bilayer polymer photovoltaic devices. Nat Mater 10:450–455CrossRef
    9.Hanack M, Subramanian LR (1997) Handbook of organic conductive molecules and polymers. Wiley 1:687
    10.Leznoff CC, Lever ABP (1993) Phthalocyanines: properties and applications. VCH Publishers 3:436
    11.Schumann S, Hatton RA, Jones TS (2011) Organic photovoltaic devices based on water-soluble copper phthalocyanine. J Phys Chem C 115:4916–4921CrossRef
    12.Chaure NB, Pal C, Barard S, Kreouzis T, Ray AK, Cammidge AN, Chambrier I, Cook MK, Murphy CE, Cain MG (2012) A liquid crystalline copper phthalocyanine derivative for high performance organic thin film transistors. J Mater Chem 22:19179–19189CrossRef
    13.Yu WL, Pei J, Cao Y, Huang W (2001) Hole-injection enhancement by copper phthalocyanine (CuPc) in blue polymer light-emitting diodes. J Appl Phys 89:2343–2350CrossRef
    14.Deon M, Caldas EM, Rosa DS, Menezes EW, Dias SLP, Pereira MB, Costa TMH, Arenas LT, Benvenutti EV (2014) Mesoporous silica xerogel modified with bridged ionic silsesquioxane used to immobilize copper tetrasulfonated phthalocyanine applied to electrochemical determination of dopamine. J Solid State Electrochem 19:2095–2105CrossRef
    15.Minami N (1982) Photocurrent spectra of phthalocyanine thin-film electrodes in the visible to near-infrared. J Chem Soc Faraday Trans 2(78):1871–1880CrossRef
    16.Couves JW, Tamizi M, Wright JD (1990) Photocurrent kinetics of group III metal–(phthalocyaninato)–halogen complexes in vacuum and oxidising gas atmospheres. J Chem Soc Faraday Trans 86:115–121CrossRef
    17.Richard JCB, Anthony RK (2005) The photoelectrochemistry of platinum phthalocyanine films in aqueous media. J Solid State Electrochem 9:459–468CrossRef
    18.Nonaka T, Nakagaw Y, Mori Y, Hirai M, Matsunobe T, Nakamura M, Takahagi T, Ishitani LH, Koumotob K (1995) Epitaxial growth of α-copper phthalocyanine crystal on Si(001) substrate by organic molecular beam deposition. Thin Solid Films 256:262–267CrossRef
    19.Wael KD, Westbroek P, Bultinck P, Depla D, Vandenabeele P, Adriaens A, Temmerman E (2005) Study of the deposition and Raman and XPS characterization of a metal ion tetrasulphonated phthalocyanine layer at gold surfaces: density functional theory calculations to model the vibrational spectra. Electrochem Commun 7:87–96CrossRef
    20.Koca A (2009) Copper phthalocyanine complex as electrocatalyst for hydrogen evolution reaction. Electrochem Commun 11:838–841CrossRef
    21.Standke B, Jansen M (1986) Ag3O4, the first silver (II, III) oxide. Angew Chem Int Ed Engl 25:77–78CrossRef
    22.Freyland W, Aravinda CL, Borissov D (2007) nanoscale electrocrystallization of metals and semiconductors from ionic liquids. In: Staikov G (ed) Electrocrystallization in nanotechnology. WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 79–95CrossRef
    23.Milchev A (2002) Electrocrystallization: fundamentals of nucleation and growth. Springer Science & Business Media
    24.Schlesinger TE, Rajeshwar K, Tacconi NRD (2010) Modern electroplating. Wiley, p 383–411
    25.Xiao F, Hangarter C, Yoo B, Rheem Y, Lee K, Myung NV (2008) Recent progress in electrodeposition of thermoelectric thin films and nanostructures. Electrochim Acta 53:8103–8117CrossRef
    26.Sugimoto H, Mori M, Masuda H, Taga T (1986) Synthesis and molecular structure of a lithium complex of the phthalocyanine radical. J Chem Soc Chem Commun 962–963
    27.Brinkmann M, André JJ (1999) Electrodeposited lithium phthalocyanine thin films. Part II:† magnetic properties and mesoscopic effects. J Mater Chem 9:1511–1520CrossRef
    28.Sakthivel K, Munichandraiah N, Scanlon LG (2005) Electrodeposition of adherent films of lithium phthalocyanine on platinum and stainless steel substrates by oxidation of dilithium phthalocyanine. J Electrochem Soc 152:C756–C763CrossRef
    29.Wang K, Dai L, Liu Q, Li H, Ju C, Wu J, Li H (2011) Electrodeposition of unsubstituted iron phthalocyanine nano-structure film in a functionalized ionic liquid and its electrocatalytic and electroanalysis applications. Analyst 136:4344–4349CrossRef
    30.Shrestha NK, Kohn H, Imamura M, Irie K, Ogihara H, Saji T (2010) Electrophoretic deposition of phthalocyanine in organic solutions containing trifluoroacetic acid. Langmuir 26:17024–17027CrossRef
    31.Defeyt C, Vandenabeele P, Gilbert B, Pevenage JV, Clootse R, Strivaya D (2012) Contribution to the identification of α-, β- and ε-copper phthalocyanine blue pigments in modern artists’ paints by X-ray powder diffraction, attenuated total reflectance micro-fourier transform infrared spectroscopy and micro-Raman spectroscopy. J Raman Spectrosc 43:1772–1780CrossRef
    32.Armstrong RD, Henderson M (1972) Impedance plane display of a reaction with an adsorbed intermediate. J Electroanal Chem 39:81–90CrossRef
    33.Danaeea I, Noori S (2011) Kinetics of the hydrogen evolution reaction on NiMn graphite modified electrode. Int J Hydrog Energy 36:12102–12111CrossRef
    34.Lopes T, Andrade L, Ribeiro HA, Mendes A (2010) Characterization of photoelectrochemical cells for water splitting by electrochemical impedance spectroscopy. Int J Hydrog Energy 35:11601–11608CrossRef
  • 作者单位:R. S. Vishwanath (1)
    Sakthivel Kandaiah (1)

    1. School of Chemical Sciences, REVA University, Bangalore, Karnataka, 560064, India
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Physical Chemistry
    Analytical Chemistry
    Industrial Chemistry and Chemical Engineering
    Characterization and Evaluation Materials
    Condensed Matter
    Electronic and Computer Engineering
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1433-0768
文摘
We present a novel electrochemical approach to grow copper phthalocyanine (CuPc) thin-film photoelectrodes through anodic oxidation of copper and dilithium phthalocyanine (Li2Pc). This circumvents the challenges associated with the electrochemical processing of unsubstituted CuPc from solution. The potentiostatic co-electrooxidation reaction at the heterogeneous interface favors the growth of CuPc thin film. The surface morphology of thin film exhibits nanorod-like features. UV-Vis, grazing angle Fourier transform infrared (FTIR), and grazing angle X-ray diffraction patterns reveal that the nanocrystalline phase corresponds only to α-CuPc and no admixture of other polymorphs. Photocurrent measurement shows a stable photoresponse in neutral medium. The photoelectrochemical hydrogen evolution on p-type CuPc coated copper photocathode shows an enhanced activity over bare copper and indium tin oxide (ITO) electrodeposited with CuPc and monolithium phthalocyanine radical (LiPc) thin films.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700