Path Planning with Loop Closure Constraints Using an Atlas-Based RRT
详细信息    查看全文
  • 刊名:Springer Tracts in Advanced Robotics
  • 出版年:2017
  • 出版时间:2017
  • 年:2017
  • 卷:100
  • 期:1
  • 页码:345-362
  • 全文大小:550 KB
  • 参考文献:1.G. Ballantyne, F. Moll, The da Vinci telerobotic surgical system: virtual operative field and telepresence surgery. Surg. Clin. North Am. 83(6), 1293–1304 (2003)CrossRef
    2.D. Berenson, S.S. Srinivasa, D. Ferguson, J.J. Kuffner, Manipulation planning on constraint manifolds, in IEEE International Conference on Robotics and Automation, pp. 1383–1390 (2009)
    3.D. Berenson, S.S. Srinivasa, J.J. Kuffner, Task space regions: a framework for pose- constrained manipulation planning. Int. J. Robot. Res. 30(12), 1435–1460 (2011)
    4.H. Choset, K. Lynch, S. Hutchinson, G. Kantor, W. Burgard, L. Kavraki, S. Thrun, Principles of Robot Motion: Theory, Algorithms, and Implementations (MIT Press, 2005)
    5.J. Cortés, T. Siméon, J.P. Laumond, A random loop generator for planning the motions of closed kinematic chains using PRM methods, in IEEE International Conference on Robotics and Automation, pp. 2141–2146 (2002)
    6.S. Dalibard, A. Nakhaei, F. Lamiraux, J.P. Laumond, Whole-body task planning for a humanoid robot: a way to integrate collision avoidance, in IEEE-RAS International Conference on Humanoid Robots, pp. 355–360 (2009)
    7.M. Galassi, et al., GNU Scientific Library Reference Manual. Network Theory Ltd. (2009)
    8.L. Han, N.M. Amato, A kinematics-based probabilistic roadmap method for closed chain systems, in Algorithmic and Computational Robotics—New Directions (WAFR2000), pp. 233–246 (2000)
    9.L. Han, L. Rudolph, Inverse kinematics for a serial chain with joints under distance constraints, in Robotics: Science and Systems II, pp. 177–184 (2006)
    10.I. Havoutis, S. Ramamoorthy, Motion synthesis through randomized exploration of submanifolds of configuration spaces, in RoboCup 2009: Robot Soccer World Cup XIII. Lecture Notes in Artificial Intelligence, vol. 5949, pp. 92–103 (2009)
    11.M.E. Henderson, Multiple parameter continuation: computing implicitly defined k-manifolds. Int. J. Bifurc. Chaos 12(3), 451–476 (2002)MathSciNet CrossRef MATH
    12.M.E. Henderson, Numerical Continuation Methods for Dynamical Systems: Path Following and Boundary Value Problems, Chap. Higher-Dimensional Continuation (Springer, Berlin, 2007)
    13.L. Jaillet, J. Cortés, T. Siméon, Sampling-based path planning on configuration-space costmaps. IEEE Trans. Rob. 26(4), 635–646 (2010)CrossRef
    14.L.E. Kavraki, P. Svestka, J.C. Latombe, M.H. Overmars, Probabilistic roadmaps for path planning in high-dimensional configuration spaces. IEEE Trans. Robot. Autom. 12, 566–580 (1996)CrossRef
    15.B. Krauskopf, H.M. Osinga, J. Galán-Vioque, Numerical Continuation Methods for Dynamical Systems: Path Following and Boundary Value Problems. Springer (2007)
    16.S.M. LaValle, Planning Algorithms (Cambridge University Press, New York, 2006)CrossRef MATH
    17.S.M. LaValle, J.J. Kuffner, Rapidly-exploring random trees: Progress and prospects, in Algorithmic and Computational Robotics—New Directions (WAFR2000), pp. 293–308 (2000)
    18.R.J. Milgram, J. Trinkle, The geometry of configuration spaces for closed chains in two and three dimensions. Homology, Homotopy Appl. 6(1), 237–267 (2004)MathSciNet CrossRef MATH
    19.C. Ott, O. Eiberger, W. Friedl, B. Bauml, U. Hillenbrand, C. Borst, A. Albu-Schafer, B. Brunner, H. Hirschmuller, G. Hirzinger, A humanoid two-arm system for dexterous manipulation, in IEEE-RAS International Conference on Humanoid Robots, pp. 276–283 (2006)
    20.J.M. Porta, L. Jaillet, Path planning on manifolds using randomized higher-dimensional continuation, in 9th International Workshop on the Algorithmic Foundations of Robotics pp. 337–353 (2010)
    21.J.M. Porta, L. Ros, F. Thomas, A linear relaxation technique for the position analysis of multiloop linkages. IEEE Trans. Rob. 25(2), 225–239 (2009)CrossRef
    22.A. Pressley, Elementary Differential Geometry (Springer, 2001)
    23.W.C. Rheinboldt, MANPACK: a set of algorithms of computations on implicitly defined manifolds. Comput. Math Appl. 32(12), 15–28 (1996)MathSciNet CrossRef MATH
    24.A. Rodŕıguez, L. Basañez, E. Celaya, A relational positioning methodology for robot task specification and execution. IEEE Trans. Robot. 24(3), 600–611 (2008)
    25.C. Rosales, L. Ros, J.M. Porta, R. Suárez, Synthesizing grasp configurations with specified contact regions. Int. J. Robot. Res. 30(4), 431–443 (2011)
    26.B. Roth, F. Freudenstein, Synthesis of path-generating mechanisms by numerical methods. ASME J. Eng. Ind. 85, 298–307 (1963)CrossRef
    27.A. Shkolmik, R. Tedrake, Path planning in 1000 + dimensions using a task-space Voronoi bias, in IEEE International Conference on Robotics and Automation, pp. 2892–2898 (2009)
    28.N. Shvlab, G. Liu, M. Shoham, J.C. Trinkle, Motion planning for a class of planar closed- chain manipulators. Int. J. Robot. Res. 26(5), 457–473 (2007)CrossRef
    29.A.J. Sommese, C.W. Wampler, The Numerical Solution of Systems of Polynomials Arising in Engineering and Science (World Scientific, 2005)
    30.M. Stilman, Task constrained motion planning in robot joint space, in IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 3074–3081 (2007)
    31.X. Tang, S. Thomas, P. Coleman, N.M. Amato, Reachable distance space: efficient sampling-based planning for spatially constrained systems. Int. J. Robot. Res. 29(7), 916–934 (2010)CrossRef
    32.The CUIK project web page, http://​www.​iri.​upc.​edu/​cuik
    33.The SOLID web page, http://​www.​dtecta.​com
    34.L.W. Tsai, Robot Analysis: The Mechanics of Serial and Parallel Manipulators (Wiley, 1999)
    35.T.T. Um, B. Kim, C. Suh, F.C. Park, Tangent space RRT with lazy projection: an efficient planning algorithm for constrained motions, in Advances in Robot Kinematics, pp. 251–260 (2010)
    36.C.W. Wampler, A. Morgan, Solving the 6R inverse position problem using a generic-case solution methodology. Mech. Mach. Theory 26(1), 91–106 (1991)CrossRef
    37.W.J. Wedemeyer, H. Scheraga, Exact analytical loop closure in proteins using polynomial equations. J. Comput. Chem. 20(8), 819–844 (1999)CrossRef
    38.J.H. Yakey, S.M. LaValle, L.E. Kavraki, Randomized path planning for linkages with closed kinematic chains. IEEE Trans. Robot. Autom. 17(6), 951–959 (2001)CrossRef
    39.F.C. Yang, E.J. Haug, Numerical analysis of the kinematic dexterity of mechanisms. J. Mech. Des. 116, 119–126 (1994)CrossRef
    40.Z. Yao, K. Gupta, Path planning with general end-effector constraints: Using task space to guide configuration space search, in IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1875–1880 (2005)
    41.A. Yershova, L. Jaillet, T. Siméon, S.M. LaValle, Dynamic-domain RRTs: efficient exploration by controlling the sampling domain, in IEEE International Conference on Robotics and Automation, pp. 3856–3861 (2005)
    42.A. Yershova, S.M. LaValle, Improving motion planning algorithms by efficient nearest neighbor searching. IEEE Trans. Rob. 23(1), 151–157 (2007)CrossRef
    43.A. Yershova, S.M. LaValle, Motion planning for highly constrained spaces, in Robot Motion and Control. Lecture Notes on Control and Information Sciences, vol. 396, pp. 297–306 (2009)
  • 作者单位:Léonard Jaillet (5)
    Josep M. Porta (5)

    5. Institut de Robòtica i Informàtica Industrial, CSIC-UPC, Llorens i Artigas 4-6, Barcelona, Spain
  • 丛书名:Robotics Research
  • ISBN:978-3-319-29363-9
  • 刊物类别:Engineering
  • 刊物主题:Automation and Robotics
    Control Engineering
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1610-742X
  • 卷排序:100
文摘
In many relevant path planning problems, loop closure constraints reduce the configuration space to a manifold embedded in the higher-dimensional joint ambient space. Whereas many progresses have been done to solve path planning problems in the presence of obstacles, only few work consider loop closure constraints. In this paper we present the AtlasRRT algorithm, a planner specially tailored for such constrained systems that builds on recently developed tools for higher-dimensional continuation. These tools provide procedures to define charts that locally parametrize manifolds and to coordinate them forming an atlas. AtlasRRT simultaneously builds an atlas and a Rapidly-Exploring Random Tree (RRT), using the atlas to sample relevant configurations for the RRT, and the RRT to devise directions of expansion for the atlas. The new planner is advantageous since samples obtained from the atlas allow a more efficient extension of the RRT than state of the art approaches, where samples are generated in the joint ambient space.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700