用户名: 密码: 验证码:
On the Curse of Dimensionality in the Ritz Method
详细信息    查看全文
  • 作者:Giorgio Gnecco
  • 关键词:Ritz method ; Curse of dimensionality ; Infinite ; dimensional optimization ; Approximation schemes ; Extended Ritz method ; 90C06 ; 90C26 ; 90C48
  • 刊名:Journal of Optimization Theory and Applications
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:168
  • 期:2
  • 页码:488-509
  • 全文大小:557 KB
  • 参考文献:1.Ritz, W.: Über eine neue Methode zur Lösung gewisser Variationsprobleme der mathematischen Physik. Journal für die Reine und Angewandte Mathematik 135, 1–61 (1909)MathSciNet
    2.Gelfand, I.M., Fomin, S.V.: Calculus of Variations. Prentice Hall, Englewood Cliffs, NJ (1963)
    3.Kůrková, V., Sanguineti, M.: Error estimates for approximate optimization by the extended Ritz method. SIAM J. Optim. 15, 461–487 (2005)CrossRef MATH
    4.Zoppoli, R., Sanguineti, M., Parisini, T.: Approximating networks and extended Ritz method for the solution of functional optimization problems. J. Optim. Theory Appl. 112, 403–440 (2002)CrossRef MathSciNet MATH
    5.Gnecco, G.: A comparison between fixed-basis and variable-basis schemes for function approximation and functional optimization. J. Appl. Math. 2012 (2012). Article ID, 806945
    6.Bellman, R.: Dynamic Programming. Princeton University Press, Princeton (1957)MATH
    7.Bosarge Jr, W.E., Johnson, O.G., McKnight, R.S., Timlake, W.P.: The Ritz-Galerkin procedure for nonlinear control problems. SIAM J. Numer. Anal. 10, 94–111 (1973)
    8.Daniel, J.W.: The Ritz-Galerkin method for abstract optimal control problems. SIAM J. Control 11, 53–63 (1973)CrossRef MathSciNet MATH
    9.Felgenhauer, U.: On Ritz type discretizations for optimal control problems. In: Proceedings of the 18th IFIP-ICZ Conference, pp. 91–99. Chapman-Hall (1999)
    10.Hager, W.W.: The Ritz-Trefftz method for state and control constrained optimal control problems. SIAM J. Numer. Anal. 12, 854–867 (1975)CrossRef MathSciNet MATH
    11.Sirisena, H.R., Chou, F.S.: Convergence of the control parameterization Ritz method for nonlinear optimal control problems. J. Optim. Theory Appl. 29, 369–382 (1979)CrossRef MathSciNet MATH
    12.Alt, W.: On the approximation of infinite optimization problems with an application to optimal control problems. Appl. Math. Optim. 12, 15–27 (1984)CrossRef MathSciNet MATH
    13.Tjuhtin, V.B.: An error estimate for approximate solutions in one-sided variational problems. Vestnik Leningr. Univ. Math. 14, 247–254 (1982)
    14.Zoppoli, R., Parisini, T.: Learning techniques and neural networks for the solution of N-stage nonlinear nonquadratic optimal control problems. In: Isidori, A., Tarn, T.J. (eds.) Systems, Models and Feedback: Theory and Applications, pp. 193–210. Birkhäuser, Boston (1992)CrossRef
    15.Kainen, P., Kůrková, V., Sanguineti, M.: Minimization of error functionals over variable-basis functions. SIAM J. Optim. 14, 732–742 (2003)CrossRef MathSciNet MATH
    16.Giulini, S., Sanguineti, M.: Approximation schemes for functional optimization problems. J. Optim. Theory Appl. 140, 33–54 (2009)CrossRef MathSciNet MATH
    17.Gnecco, G., Sanguineti, M.: Estimates of variation with respect to a set and applications to optimization problems. J. Optim. Theory Appl. 145, 53–75 (2010)CrossRef MathSciNet MATH
    18.Zolezzi, T.: Condition numbers and Ritz type methods in unconstrained optimization. Control Cybern. 36, 811–822 (2007)MathSciNet MATH
    19.Alessandri, A., Cervellera, C., Sanguineti, M.: Functional optimal estimation problems and their solution by nonlinear approximation schemes. J. Optim. Theory Appl. 134, 445–466 (2007)CrossRef MathSciNet MATH
    20.Gnecco, G., Sanguineti, M.: Suboptimal solutions to dynamic optimization problems via approximations of the policy functions. J. Optim. Theory Appl. 146, 764–794 (2010)CrossRef MathSciNet MATH
    21.Gnecco, G., Sanguineti, M., Gaggero, M.: Suboptimal solutions to team optimization problems with stochastic information structure. SIAM J. Optim. 22, 212–243 (2012)CrossRef MathSciNet MATH
    22.Kainen, P., Kůrková, V., Sanguineti, M.: Dependence of computational models on input dimension: tractability of approximation and optimization tasks. IEEE Trans. Inf. Theory 58, 1203–1214 (2012)CrossRef
    23.Apostol, T.M.: Calculus, vol. 2. Wiley, Hoboken (1968)
    24.Parlett, B.N.: The Symmetric Eigenvalue Problem. SIAM, Philadelphia (1998)CrossRef MATH
    25.Luenberger, D.: Optimization by Vector Space Methods. Wiley, Hoboken (1969)MATH
    26.Birman, M.S., Solomjak, M.Z.: Spectral Theory of Self-Adjoint Operators in Hilbert Space. D. Reidel Publishing Company, Dordrecht (1987)MATH
    27.Rudin, W.: Real and Complex Analysis. McGraw-Hill, Singapore (1987)MATH
    28.Knuth, D.E.: Big omicron and big omega and big theta. SIGACT News 8, 18–24 (1976)CrossRef
    29.Chatelin, F.: Spectral Approximation of Linear Operators. Classics in Applied Mathematics. SIAM, Philadelphia (2011)CrossRef
    30.Stein, E.M., Weiss, G.: Introduction to Fourier Analysis on Euclidean Spaces. Princeton University Press, Princeton (1971)MATH
    31.Pinkus, A.: \(n\) -Widths in Approximation Theory. Springer, Berlin (1985)
    32.DeVore, R.A., Sharpley, R.C., Riemenschneider, S.D.: \(n\) spaces. Anniversary Volume on Approximation Theory and Functional Analysis. ISNM 65: International Series of Numerical Mathematics, vol. 65, pp. 213–222. Springer, Basel (1984)
    33.Barron, A.R.: Universal approximation bounds for superpositions of a sigmoidal function. IEEE Trans. Inf. Theory 39, 930–945 (1993)CrossRef MathSciNet MATH
    34.Naylor, A.W., Sell, G.R.: Linear Operator Theory in Engineering and Science. Springer, New York (2000)MATH
  • 作者单位:Giorgio Gnecco (1)

    1. IMT Institute for Advanced Studies, Piazza S. Francesco 19, 55100, Lucca, Italy
  • 刊物主题:Calculus of Variations and Optimal Control; Optimization; Optimization; Theory of Computation; Applications of Mathematics; Engineering, general; Operations Research/Decision Theory;
  • 出版者:Springer US
  • ISSN:1573-2878
文摘
It is shown that the classical Ritz method of the calculus of variations suffers from the “curse of dimensionality,” i.e., an exponential growth, as a function of the number of variables, of the dimension a linear subspace needs in order to achieve a desired relative improvement in the accuracy of approximation of the optimal solution value. The proof is constructive and is obtained by exhibiting a family of infinite-dimensional optimization problems for which this happens, namely those with quadratic functional and spherical constraint. The results provide a theoretical motivation for the search of alternative solution methods, such as the so-called “extended Ritz method,” to deal with the curse of dimensionality. Keywords Ritz method Curse of dimensionality Infinite-dimensional optimization Approximation schemes Extended Ritz method

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700