Evaluating cytotoxic effect of nanoliposomes encapsulated with umbelliprenin on 4T1 cell line
详细信息    查看全文
  • 作者:Mohsen Rashidi ; Alireza Ahmadzadeh230
  • 关键词:Umbelliprenin ; Nanoliposomes ; Cancer
  • 刊名:In Vitro Cellular & Developmental Biology - Animal
  • 出版年:2017
  • 出版时间:January 2017
  • 年:2017
  • 卷:53
  • 期:1
  • 页码:7-11
  • 全文大小:
  • 刊物主题:Cell Biology; Developmental Biology; Stem Cells; Cell Culture; Animal Genetics and Genomics;
  • 出版者:Springer US
  • ISSN:1543-706X
  • 卷排序:53
文摘
Cytotoxicity of umbelliprenin has been found in various cancer cell lines such as, prostate, breast, CLL, and skin. Encapsulating chemotherapeutic agents with nanoliposomes have been resulted in improved cytotoxicity effects than their free forms. However, whether nanoliposomal form of umbelliprenin could have higher cytotoxic effect than free umbelliprenin is not clarified yet. After synthesizing umbelliprenin, different concentrations (3, 6, 12, 25, 50, 100, 200 μg/ml) applied on the mouse mammary carcinoma cell line (4T1) for 24, 48, and 72 h at 37°C. Afterwards, the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay was performed to analyze cytotoxicity. MTT assay results showed that IC50 of umbelliprenin in dimethyl sulfoxide (DMSO) (30.92, 30.64, and 62.23 for 24, 48, 72 h incubation, respectively) decreased (5.8, 5.0, 3.5 for 24, 48, 72 h incubation, respectively) when encapsulated with nanoliposomes. Nanoliposomal umbelliprenin cytotoxicity affected cell viability in concentration and time-dependent manner. Our study recommended nanoliposomal umbelliprenin as the most effective chemotherapeutic agent against the mouse mammary carcinoma cell line viability. Future in vivo studies and clinical trials are needed.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700