Analysis of active sites for N2 and H+ reduction on FeMo-cofactor of nitrogenase
详细信息    查看全文
  • 作者:Feng Guan (1)
    DeHua Zhao (1)
    Miao Pan (1)
    Wei Jiang (1)
    Jilun Li (1)
  • 关键词:Azotobacter vinelandii mutants ; nitrogenase ; dinitrogen and proton reduction sites ; electron transfer pathways
  • 刊名:Chinese Science Bulletin
  • 出版年:2007
  • 出版时间:August 2007
  • 年:2007
  • 卷:52
  • 期:15
  • 页码:2088-2094
  • 全文大小:1221KB
  • 参考文献:1. Burris R H. Nitrogenases. J Biol Chem, 1991, 266(15): 9339-342
    2. Burgess B K, Lowe D J. Mechanism of molybdenum nitrogenase. Chem Rev, 1996, 96(7): 2983-011 CrossRef
    3. Howard J B, Davis R, Moldenhauer B, et al. Fe:S cluster ligands are the only cysteines required for nitrogenase Fe-protein activities. J Biol Chem, 1989, 264(19): 11270-1274
    4. Georgiadis M M, Komiya H, Chakrabarti P, et al. Crystallographic structure of the nitrogenase iron protein from / Azotobacter vinelandii. Science, 1992, 257(5077): 1653-659 CrossRef
    5. Kim J, Rees D C. Structural models for the metal centers in the nitrogenase molybdenum-iron protein. Science, 1992, 257(5077): 1677-682 CrossRef
    6. Kim J, Rees D C. Crystallographic structure and functional implications of the nitrogenase molybdenum-iron protein from / Azotobacter vinelandii. Nature, 1992, 360: 553-60 CrossRef
    7. Dean D R, Bolin J T, Zheng L. Nitrogenase metalloclusters: Structures, organization, and synthesis. J Bacteriol, 1993, 175(21): 6737-744
    8. Mayer S M, Lawson D M, Gorma C A, et al. New insights into structure-function relationships in nitrogenase: A 1.6 ? resolution X-ray crystallographic study of / Klebsiella pneumoniae MoFe-protein. J Mol Biol, 1999, 292(4): 871-91 CrossRef
    9. Yang T C, Laryukhin M, Lee H I, et al. The interstitial atom of the nitrogenase FeMo-cofactor: ENDOR and ESEEM evidence that is not anitrogen. J Am Chem Soc, 2005, 127(37): 12804-2805 CrossRef
    10. Einsle O, Tezcan F A, Andrade S L, et al. Nitrogenase MoFe-protein at 1.16 ? resolution: A central ligand in the FeMo-cofactor. Science, 2002, 297(5587): 1696-700 CrossRef
    11. Rees D C. Great metalloclusters in enzymology. Annu Rev Biochem, 2002, 71: 221-46 CrossRef
    12. Igarashi R Y, Dos Santos P C, Niehaus W G et al. Localization of a catalytic intermediate bound to the FeMo-cofactor of nitrogenase. J Biol Chem, 2004, 279(33): 34770-4775 CrossRef
    13. Rees D C, Howard J B. Nitrogenase: Standing at the crossroads. Curr Opin Chem Biol, 2000, 4: 559-66 CrossRef
    14. Kim C H, Newton W E, Dean D R. Role of the MoFe protein alpha-subunit histidine-195 residue in FeMo-cofactor binding and nitrogenase catalysis. Biochemistry, 1995, 34(9): 2798-808 CrossRef
    15. Christiansen J, Cash V L, Seefeldt L C, et al. Isolation and characterization of an acetylene-resistant nitrogenase. J Biol Chem, 2000, 275(15): 11459-1464 CrossRef
    16. Benton P M, Mayer S M, Shao J, et al. Interaction of acetylene and cyanide with the resting state of nitrogenase alpha-96-substituted MoFe proteins. Biochemistry, 2001, 40: 13816-3825 CrossRef
    17. Scott D J, Dean D R, Newton W E. Nitrogenase-catalyzed ethane production and CO-sensitive hydrogen evolution from MoFe proteins having amino acid substitutions in an alpha-subunit FeMo cofactor-binding domain. J Biol Chem, 1992, 267(28): 20002-0010
    18. Fisher K, Dilworth M J, Newton W E. Differential effects on N(2) binding and reduction, HD formation, and azide reduction with alpha-195(His)- and alpha-191(Gln)-substituted MoFe proteins of / Azotobacter vinelandii nitrogenase. Biochemistry, 2000, 39: 15570-5577 CrossRef
    19. Barney B M, Igarashi R Y, Dos Santos P C, et al. Substrate interaction at an iron-sulfur face of the FeMo-cofactor during nitrogenase catalysis. J Biol Chem, 2004, 279(51): 53621-3624 CrossRef
    20. Shah V K, Imperial J, Ugalde R A, et al. / In vitro synthesis of the iron-molybdenum cofactor of nitrogenase. Proc Natl Acad Sci USA, 1986, 83(6): 1636-640 CrossRef
    21. Shah V K, Brill W J. Isolation of an iron-molybdenum cofactor from nitrogenase. Proc Natl Acad Sci USA, 1977, 74(8): 3249-253 CrossRef
    22. Hawkes T R, Lowe D J, Smith B E. Nitrogenase from / Klebsiella pneumoniae. An EPR signal observed during enzyme turnover under ethylene is associated with the iron-molybdenum cofactor. Biochem J, 1983, 211: 495-97
    23. Rees D C, Akif Tezcan F, Haynes C A, et al. Structural basis of biological nitrogen fixation. Philos Transact A Math Phys Eng Sci, 2005, 363: 971-84 CrossRef
    24. Simpson F B, Burris R H. A nitrogen pressure of 50 atmospheres does not prevent evolution of hydrogen by nitrogenase. Science, 1984, 224(4653): 1095-097 CrossRef
    25. Zhao D H, Li J L. Construction and characterization of double mutants in nitrogenase of / Klebsiella pneumoniae. Chin Sci Bull, 2004, 49(16): 1707-713 CrossRef
    26. Li J L, Burris R H. Influence of pN2 and pD2 on HD formation by various nitrogenases. Biochemistry, 1983, 22(19): 4472-480 CrossRef
    27. Turner G L, Gibson A H. Measurement of nitrogen fixation by indirect means. In: Gergerson F J, ed. Methods for Evaluating Biological Nitrogen Fixation. New York: John Wiley & Sons, 1980. 112-25
    28. Corbin J L. Liquid Chromatographic-fluorescence determination of ammonia from nitrogenase reactions: A 2-Min Assay. Appl Environ Microbiol, 1984, 47(5): 1027-030
    29. Lanzilotta W N, Christiansen J, Dean D R, et al. Evidence for coupled electron and proton transfer in the [8Fe-7S] cluster of nitrogenase. Biochemistry, 1998, 37(36): 11376-1384 CrossRef
    30. Chan M K, Kim J, Rees D C. The nitrogenase FeMo-cofactor and P-cluster pair: 2.2 ? resolution structures. Science, 1993, 260(5109): 792-94 CrossRef
    31. Lee H I, Hales B J, Hoffman B M. Metal-ion valencies of the FeMo cofactor in CO-inhibited and resting state nitrogenase by 57Fe Q-band ENDOR. J Am Chem Soc, 1997, 119(47): 11395-1400 CrossRef
    32. Pickett C J, Vincent K A, Ibrahim S K, et al. Electron-transfer chemistry of the iron-molybdenum cofactor of nitrogenase: delocalized and localized reduced states of FeMoco which allow binding of carbon monoxide to iron and molybdenum. Chem Eur J, 2003, 9(1): 76-7 CrossRef
    33. Durrant M C. Controlled protonation of iron-molybdenum cofactor by nitrogenase: A structural and theoretical analysis. Biochem J, 2001, 355: 569-76
    34. Stiefel E I. The mechanism of nitrogen fixation. In: Newton W E, ed. Recent Development in Nitrogen Fixation. London: Academic Press, 1977. 69-08
    35. Liang J, Burris R H. Hydrogen burst associated with nitrogenase-catalyzed reactions. Proc Natl Acad Sci USA, 1988, 85(24): 9446-450 CrossRef
    36. Zhang Z S, Wu B H, Li J L. Mechanism of H2 evolution by nitrogenase. Acta Microbiol Sin (in Chinese), 1993, 33: 320-30
    37. Zhang Z S, Wu B H, Li J L. Mechanism of H2 evolution by nitrogenase. In: Palacios R, Mora J, Newton W E, eds. New Horizons in Nitrogen Fixation. Dordrecht: Kluwer Academic Publishers, 1992. 154
    38. Dean D R, Setterquist R A, Brigle K E, et al. Evidence that conserved residues Cys-62 and Cys-154 within the / Azotobacter vinelandii nitrogenase MoFe protein alpha-subunit are essential for nitrogenase activity but conserved residues His-83 and Cys-88 are not. Mol Microbiol, 1990, 4(9): 1505-512 CrossRef
    39. McLean P A, Dixon R A. Requirement of / nifV gene for production of wild-type nitrogenase enzyme in / Klebsiella pneumoniae. Nature, 1981, 292: 655-56 CrossRef
    40. Durrant M C, Francis A, Lowe D J, et al. Evidence for a dynamic role for homocitrate during nitrogen fixation: The effect of substitution at the alpha-Lys426 position in MoFe-protein of / Azotobacter vinelandii. Biochem J, 2006, 397: 261-70 CrossRef
    41. Nyborg A C, Johnson J L, Gunn A, et al. Evidence for a two-electron transfer using the all-ferrous Fe protein during nitrogenase catalysis. J Biol Chem, 2000, 275(50): 39307-9312 CrossRef
    42. Nyborg A C, Erickson J A, Johnson J L, et al. Reactions of / Azotobacter vinelandii nitrogenase using Ti(III) as reductant. J Inorg Biochem, 2000, 78(4): 371-81 CrossRef
    43. Lowery T J, Wilson P E, Zhang B, et al. Nitrogen fixation special feature: Flavodoxin hydroquinone reduces / Azotobacter vinelandii Fe protein to the all-ferrous redox state with a S = 0 spin state. Proc Natl Acad Sci USA, 2006, 103(46): 17131-7136 CrossRef
  • 作者单位:Feng Guan (1)
    DeHua Zhao (1)
    Miao Pan (1)
    Wei Jiang (1)
    Jilun Li (1)

    1. State Key Laboratory for Agrobiotechnology and Department of Microbiology & Immunology, China Agricultural University, Beijing, 100094, China
  • ISSN:1861-9541
文摘
Dinitrogen (N2) and proton (H+), which act as physiological substrates of nitrogenase, are reduced on FeMo-co of the MoFe protein. However, researchers have different opinions about their exact reduction sites. Nitrogenases were purified from the wild type (WT) and five mutants of Azotobacter vinelandii (Av), including Qα191K, Hα195Q, nifV ?/sup>, Qα191K/nifV ?/sup> Hα195Q/nifV ?/sup>; and the activities of these enzymes for N2 and H+ reduction were analyzed. Our results suggest that the Fe2 and Fe6, atoms closed to the central sulfur atom (S2B) within FeMo-co, are sites for N2 binding and reduction and the Mo atom of FeMo-co is the site for H+ reduction. Combining these data with further bioinformatical analysis, we propose that two parallel electron channels may exist between the [8Fe7S] cluster and FeMo-co.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700