Intermediate formation during photodegradation of phenol using lanthanum doped tin dioxide nanoparticles
详细信息    查看全文
  • 作者:Abdullah M. Al-Hamdi ; Mika Sillanpää ; Joydeep Dutta
  • 关键词:Photocatalysis ; SnO2 ; Rare earth metal ; Lanthanum ; By ; product ; Phenol
  • 刊名:Research on Chemical Intermediates
  • 出版年:2016
  • 出版时间:April 2016
  • 年:2016
  • 卷:42
  • 期:4
  • 页码:3055-3069
  • 全文大小:1,436 KB
  • 参考文献:1.S. Vilhunen, H. Särkkä, M. Sillanpää, Environ. Sci. Pollut. Res. 16, 439–442 (2009)CrossRef
    2.D.T. Sponza, Ecotoxicol. Environ. Saf. 54, 74–86 (2003)CrossRef
    3.R.A. Rudel, J.M. Gray, C.L. Engel, T.W. Rawsthorne, R.E. Dodson, J.M. Ackerman, J. Rizzo, J.L. Nudelman, J.G. Brody, Environ. Health Perspect. 119, 914–920 (2011)CrossRef
    4.N. Abdelouahab, Y. Ainmelk, L. Takser, Reprod. Toxicol. 31, 546–550 (2011)CrossRef
    5.WH Organization. WHO, Geneva (1994)
    6.J. Michalowicz, W. Duda, Pol. J. Environ. Stud. 16, 347–362 (2007)
    7.G.L. Phipps, G.W. Holcombe, J.T. Fiandt, Bull. Environ. Contam. Toxicol. 26, 585–593 (1981)CrossRef
    8.P.S. Hooda, A.C. Edwards, H.A. Anderson, A. Miller, Sci. Total Environ. 250, 143–167 (2000)CrossRef
    9.X. Peng, Y. Yu, C. Tang, J. Tan, Q. Huang, Z. Wang, Sci. Total Environ. 397, 158–166 (2008)CrossRef
    10.U. European, Off. J. Eur. Communities L331(20), 1–5 (2001)
    11.W.H. Glaze, J.-W. Kang, D.H. Chapin, Ozone-Sci. Eng. 9, 335–352 (1987)CrossRef
    12.P.R. Gogate, A.B. Pandit, Adv. Environ. Res. 8, 501–551 (2004)CrossRef
    13.A. Matilainen, M. Sillanpää, Chemosphere 80, 351–365 (2010)CrossRef
    14.S. Tojo, T. Tachikawa, M. Fujitsuka, T. Majima, J. Phys. Chem. C 112, 14948–14954 (2008)CrossRef
    15.S. Chacko, N. Sajeeth Philip, V. Vaidyan, Phys. Status Solidi (a) 204, 3305–3315 (2007)CrossRef
    16.F. Gyger, M. Hubner, C. Feldmann, N. Barsan, U. Weimar, Chem. Mater. 22, 4821–4827 (2010)CrossRef
    17.S. Ding, J.S. Chen, G. Qi, X. Duan, Z. Wang, E.P. Giannelis, L.A. Archer, X.W. Lou, J. Am. Chem. Soc. 133, 21–23 (2011)CrossRef
    18.J.F. Wager, Science 300, 1245–1246 (2003)CrossRef
    19.J.-M. Herrmann, Environ. Sci. Pollut. Res. 19, 3655–3665 (2012)CrossRef
    20.R. Abe, M. Higashi, K. Sayama, Y. Abe, A.H. Sugihara, J. Phys. Chem. B 110, 2219–2226 (2006)CrossRef
    21.K. Hara, T. Horiguchi, T. Kinoshita, K. Sayama, H. Sugihara, H. Arakawa, Sol. Energy Mater. Sol. Cells 64, 115–134 (2000)CrossRef
    22.I.K. Konstantinou, T.A. Albanis, Appl. Catal. B Environ. 42, 319–335 (2003)CrossRef
    23.B.B. Lakshmi, C.J. Patrissi, C.R. Martin, Chem. Mater. 9, 2544–2550 (1997)CrossRef
    24.B. Neppolian, H.C. Choi, S. Sakthivel, B. Arabindoo, V. Murugesan, J. Hazard. Mater. 89, 303–317 (2002)CrossRef
    25.S. Senthilkumaar, K. Porkodi, R. Vidyalakshmi, J. Photochem. Photobiol. A 170, 225–232 (2005)CrossRef
    26.V. Štengl, S. Bakardjieva, N. Murafa, Mater. Chem. Phys. 114, 217–226 (2009)CrossRef
    27.J. Hays, A. Punnoose, R. Baldner, M.H. Engelhard, J. Peloquin, K. Reddy, Phys. Rev. B 72, 075203 (2005)CrossRef
    28.R. Ullah, J. Dutta, J. Hazard. Mater. 156, 194–200 (2008)CrossRef
    29.Z.M. El-Bahy, A.A. Ismail, R.M. Mohamed, J. Hazard. Mater. 166, 138–143 (2009)CrossRef
    30.C.M. Teh, A.R. Mohamed, J. Alloys Compd. 509, 1648–1660 (2011)CrossRef
    31.S.J. Moniz, S.A. Shevlin, D.J. Martin, Z.-X. Guo, J. Tang, Energy Environ. Sci. 8, 731–759 (2015)CrossRef
    32.A.M. Al-Hamdi, M. Sillanpää, J. Dutta, J. Mater. Sci. 49, 5151–5159 (2014)CrossRef
    33.B.G. Pawar, D.V. Pinjari, S.S. Kolekar, A.B. Pandit and S.H. Han, ISRN Chem. Eng. 2012 (2012). doi:10.​5402/​2012/​954869
    34.A. Novinrooz, P. Sarabadani, J. Garousi, Iran. J. Chem. Chem. Eng. 25, 31–38 (2006)
    35.A. Sadeh, S. Sladkevich, F. Gelman, P. Prikhodchenko, I. Baumberg, O. Berezin, O. Lev, Anal. Chem. 79, 5188–5195 (2007)CrossRef
    36.Y. Wang, I. Ramos, J.J. Santiago-Aviles, Departmental Papers (ESE), 315 (2007)
    37.L. Chinnappa, K. Ravichandran, T. Periathambi, G. Muruganantham, S. Sriram, B. Sakthivel, J. Appl. Sci. 12, 1651 (2012)CrossRef
    38.W. Bergermayer, I. Tanaka, Appl. Phys. Lett. 84, 909–911 (2004)CrossRef
    39.C. Liu, X. Tang, C. Mo, Z. Qiang, J. Solid State Chem. 181, 913–919 (2008)CrossRef
    40.A. Das, V. Bonu, A.K. Prasad, D. Panda, S. Dhara, A.K. Tyagi, J. Mater. Chem. C 2, 164–171 (2014)CrossRef
    41.K. Melghit, K. Bouziane, Mater. Sci. Eng. B 128, 58–62 (2006)CrossRef
    42.K. Melghit, K. Bouziane, J. Am. Ceram. Soc. 90, 2420–2423 (2007)CrossRef
    43.R. Liu, Y. Huang, A. Xiao, H. Liu, J. Alloys Compd. 503, 103–110 (2010)CrossRef
    44.Y.-H. Cui, Y.-J. Feng, J. Liu, N. Ren, J Hazard. Mater. 239–240, 225–232 (2012)CrossRef
    45.E.E. Bamuza-Pemu, E. Chirwa, Chem. Eng. Trans. 35, 1333 (2013)
    46.A.M. Peiró, J.A. Ayllón, J. Peral, X. Doménech, Appl. Catal. B 30, 359–373 (2001)CrossRef
    47.A.M. Al-Hamdi, M. Sillanpää, J. Dutta, J. Alloys Compd. 618, 366–371 (2015)CrossRef
  • 作者单位:Abdullah M. Al-Hamdi (1)
    Mika Sillanpää (1)
    Joydeep Dutta (2) (3)

    1. Laboratory of Green Chemistry, Lappeenranta University of Technology, Sammonkatu 12, 50130, Mikkeli, Finland
    2. Chair in Nanotechnology, Water Research Center, Sultan Qaboos University, PO Box 33, 123, Al-Khoudh, Muscat, Sultanate of Oman
    3. Functional Materials Division, ICT, KTH Royal Institute of Technology, Isafjordsgatan 22, 164 40, Kista, Stockholm, Sweden
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Catalysis
    Physical Chemistry
    Inorganic Chemistry
  • 出版者:Springer Netherlands
  • ISSN:1568-5675
文摘
Lanthanum (La)-doped tin dioxide (SnO2) nanoparticles were synthesized by a modified sol–gel method at room temperature. The samples were characterized by X-ray diffraction, scanning electron microscopy, and transmission electron microscopy. The photocatalytic activity of La:SnO2 samples were investigated by studying the degradation profile of phenol and its by-products in water. The treated samples were analyzed by HPLC–UV and a UV–Vis spectrophotometer. Benzoquinone, catechol, resorcinol, hydroquinone, acetic acid, and 2-propanol were identified as phenol degradation intermediates. Maximum concentration acquired was in the order of catechol, resorcinol, hydroquinone, and benzoquinone, which was observed in the beginning stages while iso-propanol and acetic acid were observed in the final stages of phenol degradation. We achieved a complete photodegradation of a 10 ppm aqueous phenol solution and intermediates with 0.6 % of SnO2:La nanoparticles in 120 min under artificial solar irradiation. A maximum degradation rate constant of 0.02228 min−1 of propanol and a minimum of acetic acid 0.013412 min−1 were recorded at 37 °C.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700