Impact of carbon nanotubes and graphene on immune cells
详细信息    查看全文
  • 作者:Marco Orecchioni (1)
    Davide Bedognetti (2) (3)
    Francesco Sgarrella (1)
    Francesco M Marincola (2) (3)
    Alberto Bianco (4)
    Lucia Gemma Delogu (1)

    1. Dipartimento di Chimica e Farmacia
    ; Universit脿 degli Studi di Sassari ; 07100 ; Sassari ; Italy
    2. Infectious Disease and Immunogenetics Section
    ; Department of Transfusion Medicine ; Clinical Center and Trans-National Institutes of Health Center for Human Immunology ; National Institutes of Health ; Bethesda ; MD ; USA
    3. Research Branch
    ; Sidra Medical and Research Center ; Doha ; Qatar
    4. Centre National de la Recherche Scientifique
    ; Institut de Biologie Mol茅culaire et Cellulaire ; Laboratoire d鈥橧mmunopathologie et Chimie Th茅rapeutique ; 67000 ; Strasbourg ; France
  • 关键词:Carbon nanotubes ; Graphene ; Graphene oxide ; Nanomedicine ; Immune system ; Cells ; Therapy ; Diagnosis
  • 刊名:Journal of Translational Medicine
  • 出版年:2014
  • 出版时间:December 2014
  • 年:2014
  • 卷:12
  • 期:1
  • 全文大小:323 KB
  • 参考文献:1. Peer, D, Karp, JM, Hong, S, Farokhzad, OC, Margalit, R, Langer, R (2007) Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol 2: pp. 751-760 CrossRef
    2. Buxton, DB (2009) Nanomedicine for the management of lung and blood diseases. Nanomedicine (Lond) 4: pp. 331-339 CrossRef
    3. Jain, KK (2006) Role of nanotechnology in developing new therapies for diseases of the nervous system. Nanomedicine (Lond) 1: pp. 9-12 CrossRef
    4. Delogu, LG, Vidili, G, Venturelli, E, M茅nard-Moyon, C, Zoroddu, MA, Pilo, G, Nicolussi, P, Ligios, C, Bedognetti, D, Sgarrella, F, Manetti, R, Bianco, A (2012) Functionalized multiwalled carbon nanotubes as ultrasound contrast agents. Proc Natl Acad Sci U S A 109: pp. 16612-16617 CrossRef
    5. Hellebust, A, Richards-Kortum, R (2012) Advances in molecular imaging: targeted optical contrast agents for cancer diagnostics. Nanomedicine (Lond) 7: pp. 429-445 CrossRef
    6. Shilo, M, Reuveni, T, Motiei, M, Popovtzer, R (2012) Nanoparticles as computed tomography contrast agents: current status and future perspectives. Nanomedicine (Lond) 7: pp. 257-269 CrossRef
    7. Wang, LS, Chuang, MC, Ho, JA (2012) Nanotheranostics鈥揳 review of recent publications. Int J Nanomedicine 7: pp. 4679-4695
    8. Dobrovolskaia, MA, Germolec, DR, Weaver, JL (2009) Evaluation of nanoparticle immunotoxicity. Nat Nanotechnol 4: pp. 411-414 CrossRef
    9. Bianco, A, Kostarelos, K, Prato, M (2011) Making carbon nanotubes biocompatible and biodegradable. Chem Commun (Camb) 47: pp. 10182-10188 CrossRef
    10. Kostarelos, K, Bianco, A, Prato, M (2009) Promises, facts and challenges for carbon nanotubes in imaging and therapeutics. Nat Nanotechnol 4: pp. 627-633 CrossRef
    11. Bussy, C, Ali-Boucetta, H, Kostarelos, K (2012) Safety Considerations for Graphene: Lessons Learnt from Carbon Nanotubes. Acc Chem Res 46: pp. 692-701 CrossRef
    12. Geim, AK, Novoselov, KS (2007) The rise of graphene. Nat Mater 6: pp. 183-191 CrossRef
    13. Wu, W, Wieckowski, S, Pastorin, G, Benincasa, M, Klumpp, C, Briand, JP, Gennaro, R, Prato, M, Bianco, A (2005) Targeted delivery of amphotericin B to cells by using functionalized carbon nanotubes. Angew Chem Int Ed Engl 44: pp. 6358-6362 CrossRef
    14. Bottini, M, Bruckner, S, Nika, K, Bottini, N, Bellucci, S, Magrini, A, Bergamaschi, A, Mustelin, T (2006) Multi-walled carbon nanotubes induce T lymphocyte apoptosis. Toxicol Lett 160: pp. 121-126 CrossRef
    15. Bottini, M, Cerignoli, F, Dawson, MI, Magrini, A, Rosato, N, Mustelin, T (2006) Full-length single-walled carbon nanotubes decorated with streptavidin-conjugated quantum dots as multivalent intracellular fluorescent nanoprobes. Biomacromolecules 7: pp. 2259-2263 CrossRef
    16. Dumortier, H, Lacotte, S, Pastorin, G, Marega, R, Wu, W, Bonifazi, D, Briand, JP, Prato, M, Muller, S, Bianco, A (2006) Functionalized carbon nanotubes are non-cytotoxic and preserve the functionality of primary immune cells. Nano Lett 6: pp. 1522-1528 CrossRef
    17. Liu, Z, Winters, M, Holodniy, M, Dai, H (2007) siRNA delivery into human T cells and primary cells with carbon-nanotube transporters. Angew Chem Int Ed Engl 46: pp. 2023-2027 CrossRef
    18. Cato, MH, D'Annibale, F, Mills, DM, Cerignoli, F, Dawson, MI, Bergamaschi, E, Bottini, N, Magrini, A, Bergamaschi, A, Rosato, N, Rickert, RC, Mustelin, T, Bottini, M (2008) Cell-type specific and cytoplasmic targeting of PEGylated carbon nanotube-based nanoassemblies. J Nanosci Nanotechnol 8: pp. 2259-2269 CrossRef
    19. Fadel, TR, Steenblock, ER, Stern, E, Li, N, Wang, X, Haller, GL, Pfefferle, LD, Fahmy, TM (2008) Enhanced cellular activation with single walled carbon nanotube bundles presenting antibody stimuli. Nano Lett 8: pp. 2070-2076 CrossRef
    20. Ochoa-Olmos, OE, Montero-Montoya, R, Serrano-Garcia, L, Basiuk, EV (2009) Genotoxic properties of nylon-6/MWNTs nanohybrid. J Nanosci Nanotechnol 9: pp. 4727-4734 CrossRef
    21. Delogu, LG, Magrini, A, Bergamaschi, A, Rosato, N, Dawson, MI, Bottini, N, Bottini, M (2009) Conjugation of antisense oligonucleotides to PEGylated carbon nanotubes enables efficient knockdown of PTPN22 in T lymphocytes. Bioconjug Chem 20: pp. 427-431 CrossRef
    22. Zeinali, M, Jammalan, M, Ardestani, SK, Mosaveri, N (2009) Immunological and cytotoxicological characterization of tuberculin purified protein derivative (PPD) conjugated to single-walled carbon nanotubes. Immunol Lett 126: pp. 48-53 CrossRef
    23. Cveticanin, J, Joksic, G, Leskovac, A, Petrovic, S, Sobot, AV, Neskovic, O (2010) Nanotechnology 21: pp. 015102 CrossRef
    24. Hu, X, Cook, S, Wang, P, Hwang, HM, Liu, X, Williams, QL (2010) In vitro evaluation of cytotoxicity of engineered carbon nanotubes in selected human cell lines. Sci Total Environ 408: pp. 1812-1817 CrossRef
    25. Fadel, TR, Look, M, Staffier, PA, Haller, GL, Pfefferle, LD, Fahmy, TM (2010) Clustering of stimuli on single-walled carbon nanotube bundles enhances cellular activation. Langmuir 26: pp. 5645-5654 CrossRef
    26. Sabuncu, AC, Kalluri, BS, Qian, S, Stacey, MW, Beskok, A (2010) Dispersion state and toxicity of mwCNTs in cell culture medium with different T80 concentrations. Colloids Surf B Biointerfaces 78: pp. 36-43 CrossRef
    27. Benincasa, M, Pacor, S, Wu, W, Prato, M, Bianco, A, Gennaro, R (2011) Antifungal activity of amphotericin B conjugated to carbon nanotubes. ACS Nano 5: pp. 199-208 CrossRef
    28. Delogu, LG, Stanford, SM, Santelli, E, Magrini, A, Bergamaschi, A, Motamedchaboki, K, Rosato, N, Mustelin, T, Bottini, N, Bottini, M (2010) Carbon nanotube-based nanocarriers: the importance of keeping it clean. J Nanosci Nanotechnol 10: pp. 5293-5301 CrossRef
    29. Kim, JE, Lim, HT, Minai-Tehrani, A, Kwon, JT, Shin, JY, Woo, CG, Choi, M, Baek, J, Jeong, DH, Ha, YC, Chae, CH, Song, KS, Ahn, KH, Lee, JH, Sung, HJ, Yu, IJ, Beck, GR, Cho, MH (2010) Toxicity and clearance of intratracheally administered multiwalled carbon nanotubes from murine lung. J Toxicol Environ Health A 73: pp. 1530-1543 CrossRef
    30. Sun, Z, Liu, Z, Meng, J, Meng, J, Duan, J, Xie, S, Lu, X, Zhu, Z, Wang, C, Chen, S, Xu, H, Yang, XD (2011) Carbon nanotubes enhance cytotoxicity mediated by human lymphocytes in vitro. PLoS One 6: pp. e21073 CrossRef
    31. Delogu, LG, Venturelli, E, Manetti, R, Pinna, GA, Carru, C, Madeddu, R, Murgia, L, Sgarrella, F, Dumortier, H, Bianco, A (2012) Ex vivo impact of functionalized carbon nanotubes on human immune cells. Nanomedicine (Lond) 7: pp. 231-243 CrossRef
    32. Tkach, AV, Shurin, GV, Shurin, MR, Kisin, ER, Murray, AR, Young, SH, Star, A, Fadeel, B, Kagan, VE, Shvedova, AA (2011) Direct effects of carbon nanotubes on dendritic cells induce immune suppression upon pulmonary exposure. ACS Nano 5: pp. 5755-5762 CrossRef
    33. Villa, CH, Dao, T, Ahearn, I, Fehrenbacher, N, Casey, E, Rey, DA, Korontsvit, T, Zakhaleva, V, Batt, CA, Philips, MR, Scheinberg, DA (2011) Single-walled carbon nanotubes deliver peptide antigen into dendritic cells and enhance IgG responses to tumor-associated antigens. 5311 5: pp. 5300
    34. Ni, G, Wang, Y, Wu, X, Wang, X, Chen, S, Liu, X (2012) Graphene oxide absorbed anti-IL10R antibodies enhance LPS induced immune responses in vitro and in vivo. Immunol Lett 148: pp. 126-132 CrossRef
    35. Sasidharan, A, Panchakarla, LS, Sadanandan, AR, Ashokan, A, Chandran, P, Girish, CM, Menon, D, Nair, SV, Rao, CN, Koyakutty, M (2012) Hemocompatibility and macrophage response of pristine and functionalized graphene. Small 8: pp. 1251-1263 CrossRef
    36. Tkach, AV, Yanamala, N, Stanley, S, Shurin, MR, Shurin, GV, Kisin, ER, Murray, AR, Pareso, S, Khaliullin, T, Kotchey, GP, Castranova, V, Mathur, S, Fadeel, B, Star, A, Kagan, VE, Shvedova, AA (2012) Graphene Oxide, But Not Fullerenes, Targets Immunoproteasomes and Suppresses Antigen Presentation by Dendritic Cells. Small 9: pp. 1686-1690 CrossRef
    37. Fadel, TR, Li, N, Shah, S, Look, M, Pfefferle, LD, Haller, GL, Justesen, S, Wilson, CJ, Fahmy, TM (2013) Adsorption of multimeric T cell antigens on carbon nanotubes: effect on protein structure and antigen-specific T cell stimulation. Small 9: pp. 666-672 CrossRef
    38. Zhi, X, Fang, H, Bao, C, Shen, G, Zhang, J, Wang, K, Guo, S, Wan, T, Cui, D (2013) The immunotoxicity of graphene oxides and the effect of PVP-coating. Biomaterials 34: pp. 5254-5261 CrossRef
    39. Pescatori, M, Bedognetti, D, Venturelli, E, M茅nard-Moyon, C, Bernardini, C, Muresu, E, Piana, A, Maida, G, Manetti, R, Sgarrella, F, Bianco, A, Delogu, LG (2013) Functionalized carbon nanotubes as immunomodulator systems. Biomaterials 34: pp. 4395-4403 CrossRef
    40. Fiorillo, E, Orr煤, V, Stanford, SM, Liu, Y, Salek, M, Rapini, N, Schenone, AD, Saccucci, P, Delogu, LG, Angelini, F, Manca Bitti, ML, Schmedt, C, Chan, AC, Acuto, O, Bottini, N (2010) Autoimmune-associated PTPN22 R620W variation reduces phosphorylation of lymphoid phosphatase on an inhibitory tyrosine residue. J Biol Chem 285: pp. 26506-26518 CrossRef
    41. Dale, DC, Boxer, L, Liles, WC (2008) The phagocytes: neutrophils and monocytes. Blood 112: pp. 935-945 CrossRef
    42. Parodi, A, Quattrocchi, N, van de Ven, AL, Chiappini, C, Evangelopoulos, M, Martinez, JO, Brown, BS, Khaled, SZ, Yazdi, IK, Enzo, MV, Isenhart, L, Ferrari, M, Tasciotti, E (2013) Synthetic nanoparticles functionalized with biomimetic leukocyte membranes possess cell-like functions. Nat Nanotechnol 8: pp. 61-68 CrossRef
    43. Meunier, E, Coste, A, Olagnier, D, Authier, H, Lef猫vre, L, Dardenne, C, Bernad, J, B茅raud, M, Flahaut, E, Pipy, B (2012) Double-walled carbon nanotubes trigger IL-1beta release in human monocytes through Nlrp3 inflammasome activation. Nanomedicine 8: pp. 987-995
    44. Zhao, D, Alizadeh, D, Zhang, L, Liu, W, Farrukh, O, Manuel, E, Diamond, DJ, Badie, B (2011) Carbon nanotubes enhance CpG uptake and potentiate antiglioma immunity. Clin Cancer Res 17: pp. 771-782 CrossRef
    45. Wang, X, Xia, T, Ntim, SA, Ji, Z, Lin, S, Meng, H, Chung, CH, George, S, Zhang, H, Wang, M, Li, N, Yang, Y, Castranova, V, Mitra, S, Bonner, JC, Nel, AE (2011) Dispersal state of multiwalled carbon nanotubes elicits profibrogenic cellular responses that correlate with fibrogenesis biomarkers and fibrosis in the murine lung. ACS Nano 5: pp. 9772-9787 CrossRef
    46. Gul-Uludag, H, Lu, W, Xu, P, Xing, J, Chen, J (2012) Efficient and rapid uptake of magnetic carbon nanotubes into human monocytic cells: implications for cell-based cancer gene therapy. Biotechnol Lett 34: pp. 989-993 CrossRef
    47. Li, R, Wang, X, Ji, Z, Sun, B, Zhang, H, Chang, CH, Lin, S, Meng, H, Liao, YP, Wang, M, Li, Z, Hwang, AA, Song, TB, Xu, R, Yang, Y, Zink, JI, Nel, AE, Xia, T (2013) Surface charge and cellular processing of covalently functionalized multiwall carbon nanotubes determine pulmonary toxicity. ACS Nano 7: pp. 2352-2368 CrossRef
    48. Chou, CC, Hsiao, HY, Hong, QS, Chen, CH, Peng, YW, Chen, HW, Yang, PC (2008) Single-walled carbon nanotubes can induce pulmonary injury in mouse model. Nano Lett 8: pp. 437-445 CrossRef
    49. Galon, J, Angell, HK, Bedognetti, D, Marincola, FM (2013) The continuum of cancer immunosurveillance: prognostic, predictive, and mechanistic signatures. Immunity 39: pp. 11-26 CrossRef
    50. Bedognetti, D, Spivey, TL, Zhao, Y, Uccellini, L, Tomei, S, Dudley, ME, Ascierto, ML, De Giorgi, V, Liu, Q, Delogu, LG, Sommariva, M, Sertoli, MR, Simon, R, Wang, E, Rosenberg, SA, Marincola, FM (2013) CXCR3/CCR5 pathways in metastatic melanoma patients treated with adoptive therapy and interleukin-2. Br J Cancer 109: pp. 2412-2423 CrossRef
    51. Spivey, TL, Uccellini, L, Ascierto, ML, Zoppoli, G, De Giorgi, V, Delogu, LG, Engle, AM, Thomas, JM, Wang, E, Marincola, FM, Bedognetti, D (2011) Gene expression profiling in acute allograft rejection: challenging the immunologic constant of rejection hypothesis. J Transl Med 9: pp. 174 CrossRef
    52. Ascierto, ML, De Giorgi, V, Liu, Q, Bedognetti, D, Spivey, TL, Murtas, D, Uccellini, L, Ayotte, BD, Stroncek, DF, Chouchane, L, Manjili, MH, Wang, E, Marincola, FM (2011) An immunologic portrait of cancer. J Transl Med 9: pp. 146 CrossRef
    53. Yang, R, Yang, X, Zhang, Z, Zhang, Y, Wang, S, Cai, Z, Jia, Y, Ma, Y, Zheng, C, Lu, Y, Roden, R, Chen, Y (2006) Single-walled carbon nanotubes-mediated in vivo and in vitro delivery of siRNA into antigen-presenting cells. Gene Ther 13: pp. 1714-1723 CrossRef
    54. Dutta, D, Sundaram, SK, Teeguarden, JG, Riley, BJ, Fifield, LS, Jacobs, JM, Addleman, SR, Kaysen, GA, Moudgil, BM, Weber, TJ (2007) Adsorbed proteins influence the biological activity and molecular targeting of nanomaterials. Toxicol Sci 100: pp. 303-315 CrossRef
    55. Porter, AE, Gass, M, Muller, K, Skepper, JN, Midgley, PA, Welland, M (2007) Direct imaging of single-walled carbon nanotubes in cells. Nat Nanotechnol 2: pp. 713-717 CrossRef
    56. Schipper, ML, Nakayama-Ratchford, N, Davis, CR, Kam, NW, Chu, P, Liu, Z, Sun, X, Dai, H, Gambhir, SS (2008) A pilot toxicology study of single-walled carbon nanotubes in a small sample of mice. Nat Nanotechnol 3: pp. 216-221 CrossRef
    57. VanHandel, M, Alizadeh, D, Zhang, L, Kateb, B, Bronikowski, M, Manohara, H, Badie, B (2009) Selective uptake of multi-walled carbon nanotubes by tumor macrophages in a murine glioma model. J Neuroimmunol 208: pp. 3-9 CrossRef
    58. Porter, AE, Gass, M, Bendall, JS, Muller, K, Goode, A, Skepper, JN, Midgley, PA, Welland, M (2009) Uptake of noncytotoxic acid-treated single-walled carbon nanotubes into the cytoplasm of human macrophage cells. ACS Nano 3: pp. 1485-1492 CrossRef
    59. Konduru, NV, Tyurina, YY, Feng, W, Basova, LV, Belikova, NA, Bayir, H, Clark, K, Rubin, M, Stolz, D, Vallhov, H, Scheynius, A, Witasp, E, Fadeel, B, Kichambare, PD, Star, A, Kisin, ER, Murray, AR, Shvedova, AA, Kagan, VE (2009) Phosphatidylserine targets single-walled carbon nanotubes to professional phagocytes in vitro and in vivo. PLoS One 4: pp. e4398 CrossRef
    60. Antonelli, A, Serafini, S, Menotta, M, Sfara, C, Pierig茅, F, Giorgi, L, Ambrosi, G, Rossi, L, Magnani, M (2010) Improved cellular uptake of functionalized single-walled carbon nanotubes. Nanotechnology 21: pp. 425101 CrossRef
    61. Crinelli, R, Carloni, E, Menotta, M, Giacomini, E, Bianchi, M, Ambrosi, G, Giorgi, L, Magnani, M (2010) Oxidized ultrashort nanotubes as carbon scaffolds for the construction of cell-penetrating NF-kappaB decoy molecules. ACS Nano 4: pp. 2791-2803 CrossRef
    62. Klaper, R, Arndt, D, Setyowati, K, Chen, J, Goetz, F (2010) Functionalization impacts the effects of carbon nanotubes on the immune system of rainbow trout. Oncorhynchus mykiss Aquat Toxicol 100: pp. 211-217 CrossRef
    63. Zhou, F, Xing, D, Wu, B, Wu, S, Ou, Z, Chen, WR (2010) New insights of transmembranal mechanism and subcellular localization of noncovalently modified single-walled carbon nanotubes. Nano Lett 10: pp. 1677-1681 CrossRef
    64. Meng, J, Yang, M, Jia, F, Xu, Z, Kong, H, Xu, H (2011) Immune responses of BALB/c mice to subcutaneously injected multi-walled carbon nanotubes. Nanotoxicology 5: pp. 583-591 CrossRef
    65. Deng, X, Xiong, D, Wang, Y, Chen, W, Luan, Q, Zhang, H, Jiao, Z, Wu, M (2010) Water soluble multi-walled carbon nanotubes enhance peritoneal macrophage activity in vivo. J Nanosci Nanotechnol 10: pp. 8663-8669 CrossRef
    66. Kagan, VE, Konduru, NV, Feng, W, Allen, BL, Conroy, J, Volkov, Y, Vlasova, II, Belikova, NA, Yanamala, N, Kapralov, A, Tyurina, YY, Shi, J, Kisin, ER, Murray, AR, Franks, J, Stolz, D, Gou, P, Klein-Seetharaman, J, Fadeel, B, Star, A, Shvedova, AA (2010) Carbon nanotubes degraded by neutrophil myeloperoxidase induce less pulmonary inflammation. Nat Nanotechnol 5: pp. 354-359 CrossRef
    67. Montes-Fonseca, SL, Orrantia-Borunda, E, Aguilar-Elguezabal, A, Gonz谩lez Horta, C, Talam谩s-Rohana, P, S谩nchez-Ram铆rez, B (2012) Cytotoxicity of functionalized carbon nanotubes in J774A macrophages. Nanomedicine 8: pp. 853-859
    68. Gao, N, Zhang, Q, Mu, Q, Bai, Y, Li, L, Zhou, H, Butch, ER, Powell, TB, Snyder, SE, Jiang, G, Yan, B (2011) Steering carbon nanotubes to scavenger receptor recognition by nanotube surface chemistry modification partially alleviates NFkappaB activation and reduces its immunotoxicity. ACS Nano 5: pp. 4581-4591 CrossRef
    69. Roda, E, Coccini, T, Acerbi, D, Barni, S, Vaccarone, R, Manzo, L (2011) Comparative pulmonary toxicity assessment of pristine and functionalized multi-walled carbon nanotubes intratracheally instilled in rats: morphohistochemical evaluations. Histol Histopathol 26: pp. 357-367
    70. Tahara, Y, Miyawaki, J, Zhang, M, Yang, M, Waga, I, Iijima, S, Irie, H, Yudasaka, M (2011) Histological assessments for toxicity and functionalization-dependent biodistribution of carbon nanohorns. Nanotechnology 22: pp. 265106 CrossRef
    71. Prajapati, VK, Awasthi, K, Gautam, S, Yadav, TP, Rai, M, Srivastava, ON, Sundar, S (2011) Targeted killing of Leishmania donovani in vivo and in vitro with amphotericin B attached to functionalized carbon nanotubes. J Antimicrob Chemother 66: pp. 874-879 CrossRef
    72. Tabet, L, Bussy, C, Setyan, A, Simon-Deckers, A, Rossi, MJ, Boczkowski, J, Lanone, S (2011) Coating carbon nanotubes with a polystyrene-based polymer protects against pulmonary toxicity. Part Fibre Toxicol 8: pp. 3 CrossRef
    73. Al-Jamal, KT, Nerl, H, M眉ller, KH, Ali-Boucetta, H, Li, S, Haynes, PD, Jinschek, JR, Prato, M, Bianco, A, Kostarelos, K, Porter, AE (2011) Cellular uptake mechanisms of functionalised multi-walled carbon nanotubes by 3D electron tomography imaging. Nanoscale 3: pp. 2627-2635 CrossRef
    74. Boncel, S, Muller, KH, Skepper, JN, Walczak, KZ, Koziol, KK (2011) Tunable chemistry and morphology of multi-wall carbon nanotubes as a route to non-toxic, theranostic systems. Biomaterials 32: pp. 7677-7686 CrossRef
    75. Patlolla, AK, Berry, A, Tchounwou, PB (2011) Study of hepatotoxicity and oxidative stress in male Swiss-Webster mice exposed to functionalized multi-walled carbon nanotubes. Mol Cell Biochem 358: pp. 189-199 CrossRef
    76. Kosuge, H, Sherlock, SP, Kitagawa, T, Terashima, M, Barral, JK, Nishimura, DG, Dai, H, McConnell, MV (2011) FeCo/graphite nanocrystals for multi-modality imaging of experimental vascular inflammation. PLoS One 6: pp. e14523 CrossRef
    77. Dong, PX, Wan, B, Guo, LH (2012) In vitro toxicity of acid-functionalized single-walled carbon nanotubes: effects on murine macrophages and gene expression profiling. Nanotoxicology 6: pp. 288-303 CrossRef
    78. Zhang, M, Zhou, X, Iijima, S, Yudasaka, M (2012) Small-sized carbon nanohorns enabling cellular uptake control. Small 8: pp. 2524-2531 CrossRef
    79. Tahara, Y, Nakamura, M, Yang, M, Zhang, M, Iijima, S, Yudaska, M (2012) Lysosomal membrane destabilization induced by high accumulation of single-walled carbon nanohorns in murine macrophage RAW 264.7. Biomaterials 33: pp. 2762-2769 CrossRef
    80. Chen, T, Zang, J, Wang, H, Nie, H, Wang, X, Shen, Z, Tang, S, Yang, J, Jia, G (2012) Water-soluble taurine-functionalized multi-walled carbon nanotubes induce less damage to mitochondria of RAW 264.7 cells. J Nanosci Nanotechnol 12: pp. 8008-8016 CrossRef
    81. Zhang, T, Tang, M, Kong, L, Li, H, Zhang, T, Zhang, S, Xue, Y, Pu, Y (2012) Comparison of cytotoxic and inflammatory responses of pristine and functionalized multi-walled carbon nanotubes in RAW 264.7 mouse macrophages. J Hazard Mater 219鈥?20: pp. 203-212 CrossRef
    82. Luo, M, Deng, X, Shen, X, Dong, L, Liu, Y (2012) Comparison of cytotoxicity of pristine and covalently functionalized multi-walled carbon nanotubes in RAW 264.7 macrophages. J Nanosci Nanotechnol 12: pp. 274-283 CrossRef
    83. Clark, KA, O'Driscoll, C, Cooke, CA, Smith, BA, Wepasnick, K, Fairbrother, DH, Lees, PS, Bressler, JP (2012) Evaluation of the interactions between multiwalled carbon nanotubes and Caco-2 cells. J Toxicol Environ Health A 75: pp. 25-35 CrossRef
    84. Schinwald, A, Murphy, FA, Jones, A, MacNee, W, Donaldson, K (2012) Graphene-based nanoplatelets: a new risk to the respiratory system as a consequence of their unusual aerodynamic properties. ACS Nano 6: pp. 736-746 CrossRef
    85. Li, Y, Liu, Y, Fu, Y, Wei, T, Le Guyader, L, Gao, G, Liu, RS, Chang, YZ, Chen, C (2012) The triggering of apoptosis in macrophages by pristine graphene through the MAPK and TGF-beta signaling pathways. Biomaterials 33: pp. 402-411 CrossRef
    86. Chen, GY, Yang, HJ, Lu, CH, Chao, YC, Hwang, SM, Chen, CL, Lo, KW, Sung, LY, Luo, WY, Tuan, HY, Hu, YC (2012) Simultaneous induction of autophagy and toll-like receptor signaling pathways by graphene oxide. Biomaterials 33: pp. 6559-6569 CrossRef
    87. Yue, H, Wei, W, Yue, Z, Wang, B, Luo, N, Gao, Y, Ma, D, Ma, G, Su, Z (2012) The role of the lateral dimension of graphene oxide in the regulation of cellular responses. Biomaterials 33: pp. 4013-4021 CrossRef
    88. Zhou, H, Zhao, K, Li, W, Yang, N, Liu, Y, Chen, C, Wei, T (2012) The interactions between pristine graphene and macrophages and the production of cytokines/chemokines via TLR- and NF-kappaB-related signaling pathways. Biomaterials 33: pp. 6933-6942 CrossRef
    89. Rawson, FJ, Yeung, CL, Jackson, SK, Mendes, PM (2013) Tailoring 3D single-walled carbon nanotubes anchored to indium tin oxide for natural cellular uptake and intracellular sensing. Nano Lett 13: pp. 1-8 CrossRef
    90. Matesanz, MC, Vila, M, Feito, MJ, Linares, J, Gon莽alves, G, Vallet-Regi, M, Marques, PA, Portol茅s, MT (2013) The effects of graphene oxide nanosheets localized on F-actin filaments on cell-cycle alterations. Biomaterials 34: pp. 1562-1569 CrossRef
    91. Yang, M, Wada, M, Zhang, M, Kostarelos, K, Yuge, R, Iijima, S, Masuda, M, Yudasaka, M (2013) A high poly(ethylene glycol) density on graphene nanomaterials reduces the detachment of lipid-poly(ethylene glycol) and macrophage uptake. Acta Biomater 9: pp. 4744-4753 CrossRef
    92. Hamilton, RF, Xiang, C, Li, M, Ka, I, Yang, F, Ma, D, Porter, DW, Wu, N, Holian, A (2013) Purification and sidewall functionalization of multiwalled carbon nanotubes and resulting bioactivity in two macrophage models. Inhal Toxicol 25: pp. 199-210 CrossRef
    93. Girish, CM, Sasidharan, A, Gowd, GS, Nair, S, Koyakutty, M (2013) Confocal Raman Imaging Study Showing Macrophage Mediated Biodegradation of Graphene In Vivo. Adv Healthc Mater 2: pp. 1489-1500 CrossRef
    94. Dvash, R, Khatchatouriants, A, Solmesky, LJ, Wibroe, PP, Weil, M, Moghimi, SM, Peer, D (2013) Structural profiling and biological performance of phospholipid-hyaluronan functionalized single-walled carbon nanotubes. J Control Release 170: pp. 295-305 CrossRef
    95. Wan, B, Wang, ZX, Lv, QY, Dong, PX, Zhao, LX, Yang, Y, Guo, LH (2013) Single-walled carbon nanotubes and graphene oxides induce autophagosome accumulation and lysosome impairment in primarily cultured murine peritoneal macrophages. Toxicol Lett 221: pp. 118-127 CrossRef
    96. Jiang, Y, Zhang, H, Wang, Y, Chen, M, Ye, S, Hou, Z, Ren, L (2013) Modulation of apoptotic pathways of macrophages by surface-functionalized multi-walled carbon nanotubes. PLoS One 8: pp. e65756 CrossRef
    97. Qu, G, Liu, S, Zhang, S, Wang, L, Wang, X, Sun, B, Yin, N, Gao, X, Xia, T, Chen, JJ, Jiang, GB (2013) Graphene oxide induces toll-like receptor 4 (TLR4)-dependent necrosis in macrophages. ACS Nano 7: pp. 5732-5745 CrossRef
    98. Villegas, JC, Alvarez-Montes, L, Rodr铆guez-Fern谩ndez, L, Gonz谩lez, J, Valiente, R, Fanarraga, ML (2013) Multiwalled Carbon Nanotubes Hinder Microglia Function Interfering with Cell Migration and Phagocytosis. Adv Healthc Mater 3: pp. 424-432 CrossRef
    99. Li, Y, Yuan, H, von dem Bussche, A, Creighton, M, Hurt, RH, Kane, AB, Gao, H (2013) Graphene microsheets enter cells through spontaneous membrane penetration at edge asperities and corner sites. Proc Natl Acad Sci U S A 110: pp. 12295-12300 CrossRef
    100. Kotagiri, N, Lee, JS, Kim, JW (2013) Selective pathogen targeting and macrophage evading carbon nanotubes through dextran sulfate coating and PEGylation for photothermal theranostics. J Biomed Nanotechnol 9: pp. 1008-1016 CrossRef
    101. Russier, J, Treossi, E, Scarsi, A, Perrozzi, F, Dumortier, H, Ottaviano, L, Meneghetti, M, Palermo, V, Bianco, A (2013) Evidencing the mask effect of graphene oxide: a comparative study on primary human and murine phagocytic cells. Nanoscale 5: pp. 11234-11247 CrossRef
    102. Yang, M, Flavin, K, Kopf, I, Radics, G, Hearnden, CH, McManus, GJ, Moran, B, Villalta-Cerdas, A, Echegoyen, LA, Giordani, S, Lavelle, EC (2013) Functionalization of Carbon Nanoparticles Modulates Inflammatory Cell Recruitment and NLRP3 Inflammasome Activation. Small 9: pp. 4194-4206 CrossRef
    103. Lacotte, S, Garc铆a, A, D茅cossas, M, Al-Jamal, WT, Li, S, Kostarelos, K, Muller, S, Prato, M, Dumortier, H, Alberto, B (2008) Interfacing Functionalized Carbon Nanohorns with Primary Phagocytic Cells. Adv Materials 20: pp. 2421-2426 CrossRef
    104. Pantarotto, D, Briand, JP, Prato, M, Bianco, A (2004) Translocation of bioactive peptides across cell membranes by carbon nanotubes. Chem Commun (Camb) 16: pp. 17
    105. Poland, CA, Duffin, R, Kinloch, I, Maynard, A, Wallace, WA, Seaton, A, Stone, V, Brown, S, Macnee, W, Donaldson, K (2008) Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study. Nat Nanotechnol 3: pp. 423-428 CrossRef
    106. Salvador-Morales, C, Flahaut, E, Sim, E, Sloan, J, Green, ML, Sim, RB (2006) Complement activation and protein adsorption by carbon nanotubes. Mol Immunol 43: pp. 193-201 CrossRef
    107. Ali-Boucetta, HN, Sainz, R, Herrero, MA, Tian, B, Prato, M, Bianco, A, Kostarelos, K (2013) Asbestos-like pathogenicity of long carbon nanotubes alleviated by chemical functionalization. Angew Chem Int Ed 52: pp. 2274-2278 CrossRef
    108. Coccini, T, Manzo, L, Roda, E (2013) Safety evaluation of engineered nanomaterials for health risk assessment: an experimental tiered testing approach using pristine and functionalized carbon nanotubes. ISRN Toxicol 2013: pp. 825427 CrossRef
    109. Beg, S, Rizwan, M, Sheikh, AM, Hasnain, MS, Anwer, K, Kohli, K (2011) Advancement in carbon nanotubes: basics, biomedical applications and toxicity. J Pharm Pharmacol 63: pp. 141-163 CrossRef
    110. Bianco, A (2013) Graphene: safe or toxic? The two faces of the medal. Angew Chem Int Ed Engl 52: pp. 4986-4997 CrossRef
    111. Gottardi, R, Douradinha, B (2013) Carbon nanotubes as a novel tool for vaccination against infectious diseases and cancer. J Nanobiotechnology 11: pp. 30 CrossRef
    112. Tomei, S, Wang, E, Delogu, LG, Marincola, FM, Bedognetti, D (2014) Non-BRAF-targeted therapy, immunotherapy, and combination therapy for melanoma. Expert Opin Biol Ther 14: pp. 663-686 CrossRef
    113. Bedognetti, D, Balwit, JM, Wang, E, Disis, ML, Britten, CM, Delogu, LG, Tomei, S, Fox, BA, Gajewski, TF, Marincola, FM, Butterfield, LH (2011) SITC/iSBTc Cancer Immunotherapy Biomarkers Resource Document: online resources and useful tools - a compass in the land of biomarker discovery. J Transl Med 9: pp. 155 CrossRef
    114. Shay, T, Jojic, V, Zuk, O, Rothamel, K, Puyraimond-Zemmour, D, Feng, T, Wakamatsu, E, Benoist, C, Koller, D, Regev, A (2013) Conservation and divergence in the transcriptional programs of the human and mouse immune systems. Proc Natl Acad Sci U S A 110: pp. 2946-2951 CrossRef
  • 刊物主题:Biomedicine general; Medicine/Public Health, general;
  • 出版者:BioMed Central
  • ISSN:1479-5876
文摘
It has been recently proposed that nanomaterials, alone or in concert with their specific biomolecular conjugates, can be used to directly modulate the immune system, therefore offering a new tool for the enhancement of immune-based therapies against infectious disease and cancer. Here, we revised the publications on the impact of functionalized carbon nanotubes (f-CNTs), graphene and carbon nanohorns on immune cells. Whereas f-CNTs are the nanomaterial most widely investigated, we noticed a progressive increase of studies focusing on graphene in the last couple of years. The majority of the works (56%) have been carried out on macrophages, following by lymphocytes (30% of the studies). In the case of lymphocytes, T cells were the most investigated (22%) followed by monocytes and dendritic cells (7%), mixed cell populations (peripheral blood mononuclear cells, 6%), and B and natural killer (NK) cells (1%). Most of the studies focused on toxicity and biocompatibility, while mechanistic insights on the effect of carbon nanotubes on immune cells are generally lacking. Only very recently high-throughput gene-expression analyses have shed new lights on unrecognized effects of carbon nanomaterials on the immune system. These investigations have demonstrated that some f-CNTs can directly elicitate specific inflammatory pathways. The interaction of graphene with the immune system is still at a very early stage of investigation. This comprehensive state of the art on biocompatible f-CNTs and graphene on immune cells provides a useful compass to guide future researches on immunological applications of carbon nanomaterials in medicine.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700