Metabolic engineering of Bacillus subtilis for terpenoid production
详细信息    查看全文
  • 作者:Zheng Guan ; Dan Xue ; Ingy I. Abdallah…
  • 关键词:Biosynthesis ; Metabolic engineering ; Terpenoids ; Bacillus subtilis
  • 刊名:Applied Microbiology and Biotechnology
  • 出版年:2015
  • 出版时间:November 2015
  • 年:2015
  • 卷:99
  • 期:22
  • 页码:9395-9406
  • 全文大小:1,721 KB
  • 参考文献:Ajikumar PK, Xiao W-H, Tyo KE, Wang Y, Simeon F, Leonard E, Mucha O, Phon TH, Pfeifer B, Stephanopoulos G (2010) Isoprenoid pathway optimization for Taxol precursor overproduction in Escherichia coli. Science (New York, NY) 330(6000):70-4CrossRef
    Baidoo EE, Keasling JD (2013) Microbial metabolomics: welcome to the real world! Metabolomics 9(4):755-56CrossRef
    Barredo J-L (2012) Microbial carotenoids from bacteria and microalgae. Methods Mol Biol 892:133-41CrossRef
    Berthelot K, Estevez Y, Deffieux A, Peruch F (2012) Isopentenyl diphosphate isomerase: a checkpoint to isoprenoid biosynthesis. Biochimie 94(8):1621-634. doi:10.-016/?j.?biochi.-012.-3.-21 PubMed CrossRef
    Bordbar A, Monk JM, King ZA, Palsson BO (2014) Constraint-based models predict metabolic and associated cellular functions. Nat Rev Genet 15(2):107-20PubMed CrossRef
    Breitmaier E (2006) Terpenes: flavors, fragrances, pharmaca, pheromones. John Wiley & Sons
    Campbell TL, Brown ED (2002) Characterization of the depletion of 2-C-methyl-D-erythritol-2,4-cyclodiphosphate synthase in Escherichia coli and Bacillus subtilis. J Bacteriol 184(20):5609-618
    Carlsen S, Ajikumar PK, Formenti LR, Zhou K, Phon TH, Nielsen ML, Lantz AE, Kielland-Brandt MC, Stephanopoulos G (2013) Heterologous expression and characterization of bacterial 2-C-methyl-D-erythritol-4-phosphate pathway in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 97(13):5753-769. doi:10.-007/?s00253-013-4877-y
    Chang MCY, Eachus RA, Trieu W, Ro D-K, Keasling JD (2007) Engineering Escherichia coli for production of functionalized terpenoids using plant P450s. Nat Chem Biol 3(5):274-77. doi:10.-038/?nchembio875 PubMed CrossRef
    Cho K, Evans BS, Wood BM, Kumar R, Erb TJ, Warlick BP, Gerlt JA, Sweedler JV (2014) Integration of untargeted metabolomics with transcriptomics reveals active metabolic pathways. Metabolomics 2014(August). doi:10.-007/?s11306-014-0713-3
    Coulier L, Bas R, Jespersen S, Verheij E, van der Werf MJ, Hankemeier T (2006) Simultaneous quantitative analysis of metabolites using ion-pair liquid chromatography-electrospray ionization mass spectrometry. Anal Chem 78(18):6573-582PubMed CrossRef
    Custer TG, Wagner WP, Kato S, Bierbaum VM, Fall R (2003) Potential of on-line CIMS for bioprocess monitoring. Biotechnol Prog 19(4):1355-364. doi:10.-021/?bp025730k PubMed CrossRef
    de Oliveira VE, Castro HV, Edwards HG, de Oliveira LFC (2010) Carotenes and carotenoids in natural biological samples: a Raman spectroscopic analysis. J Raman Spectrosc 41(6):642-50CrossRef
    Eoh H, Narayanasamy P, Brown AC, Parish T, Brennan PJ, Crick DC (2009) Expression and characterization of soluble 4-diphosphocytidyl-2-C-methyl-D-erythritol kinase from bacterial pathogens. Chem Biol 16(12):1230-239
    Estévez JM, Cantero A, Reindl A, Reichler S, León P (2001) 1-Deoxy-D-xylulose-5-phosphate synthase, a limiting enzyme for plastidic isoprenoid biosynthesis in plants. J Biol Chem 276(25):22901-2909PubMed CrossRef
    FDA (1997) FDA proposed simplified. GRAS notification system - 62 FR 18937 62(74):18938-8964
    Fiehn O, Robertson D, Griffin J, van der Werf M, Nikolau B, Morrison N, Sumner LW, Goodacre R, Hardy NW, Taylor C (2007) The metabolomics standards initiative (MSI). Metabolomics 3(3):175-78CrossRef
    Fisher AJ, Rosenstiel TN, Shirk MC, Fall R (2001) Nonradioactive assay for cellular dimethylallyl diphosphate. Anal Biochem 292(2):272-79. doi:10.-006/?abio.-001.-079 PubMed CrossRef
    Foppen FH (1971) Tables for the identification of carotenoid pigments. Chromatogr Rev 14(3):133-98PubMed CrossRef
    Fox DT, Poulter CD (2005) Mechanistic studies with 2-C-methyl-D-erythritol 4-phosphate synthase from Escherichia coli. Biochemistry 44(23):8360-368. doi:10.-021/?bi047312p
    Hecht S, Eisenreich W, Adam P, Amslinger S, Kis K, Bacher A, Arigoni D, Rohdich F (2001) Studies on the nonmevalonate pathway to terpenes: the role of the GcpE (IspG) protein. Proc Natl Acad Sci 98(26):14837-4842. doi:10.-073/?pnas.-01399298 PubMedCentral PubMed CrossRef
    Heider SAE, Peters-Wendisch P, Wendisch VF, Beekwilder J, Brautaset T (2014) Metabolic engineering for the microbial production of carotenoids and related products with a focus on the rare C50 carotenoids. Appl Microbiol Biotechnol 98(10):4355-368. doi:10.-007/?s00253-014-5693-8 PubMed CrossRef
    Herz S, Wungsintaweekul J, Schuhr CA, Hecht S, Lüttgen H, Sagner S, Fellermeier M, Eisenreich W, Zenk MH, Bacher A (2000) Biosynthesis of terpenoids: YgbB protein converts 4-diphosphocytidyl-2C-methyl-D-erythritol 2-phosphate to 2C-methyl-D-erythritol 2, 4-cyclodiphosphate. Proc Natl Acad Sci 97(6):2486-490
    Hess BM, Xue J, Markillie LM, Taylor RC, Wiley HS, Ahring BK, Linggi B (2013) Coregulation of terpenoid pathway genes and prediction of isoprene production in using transcriptomics. PLoS One 8(6):e66104. doi:10.-371/?journal.?pone.-066104 PubMedCentral PubMed CrossRef
    Jia L, Liu B
  • 作者单位:Zheng Guan (1) (2)
    Dan Xue (1)
    Ingy I. Abdallah (1)
    Linda Dijkshoorn (1)
    Rita Setroikromo (1)
    Guiyuan Lv (2)
    Wim J. Quax (1)

    1. Department of Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, Building 3215, room 917, 9713 AV, Groningen, The Netherlands
    2. Institute of Materia Medica, Zhejiang Chinese Medical University, Hangzhou, 310053, China
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Biotechnology
    Microbiology
    Microbial Genetics and Genomics
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1432-0614
文摘
Terpenoids are the largest group of small-molecule natural products, with more than 60,000 compounds made from isopentenyl diphosphate (IPP) and its isomer dimethylallyl diphosphate (DMAPP). As the most diverse group of small-molecule natural products, terpenoids play an important role in the pharmaceutical, food, and cosmetic industries. For decades, Escherichia coli (E. coli) and Saccharomyces cerevisiae (S. cerevisiae) were extensively studied to biosynthesize terpenoids, because they are both fully amenable to genetic modifications and have vast molecular resources. On the other hand, our literature survey (20 years) revealed that terpenoids are naturally more widespread in Bacillales. In the mid-1990s, an inherent methylerythritol phosphate (MEP) pathway was discovered in Bacillus subtilis (B. subtilis). Since B. subtilis is a generally recognized as safe (GRAS) organism and has long been used for the industrial production of proteins, attempts to biosynthesize terpenoids in this bacterium have aroused much interest in the scientific community. This review discusses metabolic engineering of B. subtilis for terpenoid production, and encountered challenges will be discussed. We will summarize some major advances and outline future directions for exploiting the potential of B. subtilis as a desired “cell factory-to produce terpenoids. Keywords Biosynthesis Metabolic engineering Terpenoids Bacillus subtilis

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700