Hybrid direct carbon fuel cells and their reaction mechanisms—a review
详细信息    查看全文
  • 作者:L. Deleebeeck (1)
    K. K. Hansen (1)
  • 关键词:Coal ; Fuel cell ; Reaction mechanism ; Electrochemical oxidation ; Gasification ; MCFC ; SOFC
  • 刊名:Journal of Solid State Electrochemistry
  • 出版年:2014
  • 出版时间:April 2014
  • 年:2014
  • 卷:18
  • 期:4
  • 页码:861-882
  • 全文大小:5,600 KB
  • 参考文献:1. Guzman F, Singh R, Chuang SSC (2011) Direct use of sulfur-containing coke on a Ni-yttria-stabilized zirconia anode solid oxide fuel cell. Energy Fuels 25:2179-186 CrossRef
    2. Hemmes K, Houwing M, Woudstra N (2010) Modeling of a direct carbon fuel cell system, J Fuel Cell Sci Tech 7(5): 051008 (6 pgs)
    3. Cherepy NJ, Krueger R, Fiet KJ, Jankowski AF, Cooper JF (2005) Direct conversion of carbon fuels in a molten carbonate fuel cell. J Electrochem Soc 152(1):A80–A87 CrossRef
    4. Kabe T, Ishihara A, Qian EW, Sutrisna IP, Kabe Y, Centi G (2004) Gasification of coal, In: Studies in surface science and catalysis, coal and coal-related compounds: structures, reactivity and catalytic reactions, 150: 269-02, Kodansha Ltd. (Tokyo) and Elsevier B.V. (Amsterdam)
    5. Jain SL, Lakeman JB, Pointon KD, Marshall R, Irvine JTS (2009) Electrochemical performance of a hybrid direct carbon fuel cell powered by pyrolysed MDF. Energy Environ Sci 2:687-93 CrossRef
    6. Carlson EJ (2006) Assessment of a novel direct coal conversion—fuel cell technology for electric utility markets, EPRI report 1013362
    7. Desclaux P, Nurnberger S, Rzepka M, Stimming U (2011) Investigation of direct carbon conversion at the surface of a YSZ electrolyte in a SOFC. Int J Hydrogen Energy 36:10278-0281 CrossRef
    8. Jain SL, Nabae Y, Lakeman BJ, Pointon KD, Irvine JTS (2008) Solid state electrochemistry of direct carbon/air fuel cells. Solid State Ionics 179:1417-421 CrossRef
    9. Nabae Y, Pointon KD, Irvine JTS (2009) Ni/C slurries based on molten carbonates as a fuel for hybrid direct carbon fuel cells. J Electrochem Soc 156(6):B716–B720 CrossRef
    10. Cao D, Sun Y, Wang G (2007) Direct carbon fuel cell: fundamentals and recent developments. J Power Sources 167:250-57 CrossRef
    11. Nurnberger S, Bussar R, Desclaux P, Franke B, Rzepka M, Stimming U (2010) Direct carbon conversion in a SOFC-system with a non-porous anode. Energy Environ Sci 3:150-53 CrossRef
    12. Li H, Liu Q, Li Y (2010) A carbon in molten carbonate anode model for a direct carbon fuel cell. Electrochim Acta 55:1958-965 CrossRef
    13. Chien AC, Chuang SSC (2011) Effect of gas flow rates and Boudouard reactions on the performance of Ni/YSZ anode supported solid oxide fuel cells with solid carbon fuels. J Power Sources 196:4719-723 CrossRef
    14. Gur TM (2010) Mechanistic modes for solid carbon conversion in high temperature fuel cells. J Electrochem Soc 157(5):B751–B759 CrossRef
    15. Srinivasan S (1989) Fuel cells for extraterrestrial and terrestrial applications. J Electrochem Soc 136(2):41C-8C CrossRef
    16. Meibuhr SG (1966) Review of United States fuel-cell patents issued from 1860 to 1947. Electrochim Acta 11:1301-308 CrossRef
    17. Jacques WW (1896) Method of converting potential energy of carbon into electrical energy. U S Patent 555:511
    18. Haber T, Bruner L (1904) Das Kohlenelement, eine Knallgaskette. Z Elktrochem Angew P 10:697-13 CrossRef
    19. Giddey S, Badwal SPS, Kulkarni A, Munnings C (2012) A comprehensive review of direct carbon fuel cell technology. Prog Energy Combust Sci 38:360-99 CrossRef
    20. Pointon K, Lakeman B, Irvine JTS, Bradley J, Jain S (2006) The development of a carbon-air semi fuel cell. J Power Sources 162:750-56 CrossRef
    21. Heydorn B, Crouch-Baker S (2006) Direct carbon conversion: progressions of power, Fuel Cell Review
    22. Rady AC, Giddey S, Badwal SPS, Ladewig BP, Bhattacharya S (2012) Review of fuels for direct carbon fuel cells. Energy Fuels 26:1471-488 CrossRef
    23. Wolk RH, Lux S, Gelber S, Holcomb FH (2007) Direct carbon fuel cells: converting waste to electricity, US Army Corps of Engineers (ERDC-CERL)
    24. Rastler D (2008) Program on technology innovation: systems assessment of direct carbon fuel cells technology, EPRI report 1016170
    25. Spallina V, Romano MC, Campanari S, Lozza G (2012) Application of MCFC in coal gasification plants for high efficiency CO2 capture, J Eng Gas Turb Power-Trans ASME 134(1): 011701 (8 pgs)
    26. Hemmes K, Peelen WHA, de Wit JHW (1998) Study of the (electro)chemical equilibria in molten carbonate under the MCFC cathode gas atmosphere. Part I: selection of independent set of equilibria to describe the (electro)chemical equilibrium in molten carbonate under the MCFC cathode gas atmosphere. Electrochim Acta 43(14-5):2025-031 CrossRef
    27. Li C, Shi Y, Cai N (2011) Mechanism for carbon direct electrochemical reactions in a solid oxide electrolyte direct carbon fuel cell. J Power Sources 196:754-63 CrossRef
    28. Antolini E (2011) The stability of molten carbonate fuel cell electrodes: a review of recent improvements. Appl Energy 88:4274-293 CrossRef
    29. Sugiura K, Yodo T, Yamauchi M, Tanimoto K (2006) Visualization of electrolyte volatile phenomenon in DIR-MCFC. J Power Sources 157:739-44 CrossRef
    30. Berger RJ, Doesburg EBM, van Ommen JG, Ross JRH (1996) Investigation of alkali carbonate transport towards the catalyst in internal reforming MCFCs. J Electrochem Soc 143(10):3186-191 CrossRef
    31. Patil KY, Yoon SP, Han J, Lim T-H, Nam SW, Oh I-H, Hong S-A (2011) Phase stabilities in molten Li/K carbonate of efficient matrix materials for molten carbonate fuel cells: thermodynamic calculations and experimental investigations. J Mater Sci 46:2557-567 CrossRef
    32. Yuh C, Johnsen R, Farooque M, Maru H (1995) Status of carbonate fuel cell materials. J Power Sources 56:1-0 CrossRef
    33. Randstrom S, Lagergren C, Capobianco P (2006) Corrosion of anode current collectors in molten carbonate fuel cells. J Power Sources 160:782-88 CrossRef
    34. Keding R, Russel C, Pascual MJ, Pascual L, Duran A (2002) Corrosion mechanism of borosilicate sealing glasses in molten carbonates studied by impedance spectroscopy. J Electroanal Chem 528:184-89 CrossRef
    35. Pascual MJ, Pascual L, Valle FJ, Duran A, Berjoan R (2003) Corrosion of borosilicate glasses for molten carbonate fuel cells. J Am Ceram Soc 86(11):1918-926 CrossRef
    36. Ruflin J, Perwich AD II, Brett C, Berner JK, Lux SM (2012) Direct carbon fuel cell: a proposed hybrid design to improve commercialization potential. J Power Sources 213:275-86 CrossRef
    37. Jia L, Tian Y, Liu Q, Xia C, Yu J, Wang Z, Zhao Y, Li Y (2010) A direct carbon fuel cell with (molten carbonate)/(doped ceria) composite electrolyte. J Power Sources 195:5581-586 CrossRef
    38. Elleuch A, Yu J, Boussetta A, Halouani K, Li Y (2013) Electrochemical oxidation of graphite in an intermediate temperature direct carbon fuel cell based on two-phases electrolyte. Int J Hydrogen Energy 38(20):8514-523 CrossRef
    39. Liu Q, Tian Y, Li H, Jia L, Xia C, Thompson LT, Li Y (2010) High efficiency chemical energy conversion system based on methane catalytic decomposition reaction and two fuel cells: Part I. Process modeling and validation, J Power Sources 195: 6539-548 and Fig. 2 reprinted from Journal of Power Sources, 195, Liu Q, Tian Y, Li H, Jia L, Xia C, Thompson LT, Li Y, High efficiency chemical energy conversion system based on methane catalytic decomposition reaction and two fuel cells: Part I. Process modeling and validation, 6546 Copyright ? 2010, with permission from Elsevier
    40. Dudek M, Tomczyk P (2011) Composite fuel for direct carbon fuel cell. Catal Today 176:388-92 CrossRef
    41. Li C, Shi Y, Cai N (2011) Effect of contact type between anode and carbonaceous fuels on direct carbon fuel cell reaction characteristics. J Power Sources 196:4588-593 CrossRef
    42. Kulkarni A, Giddey S, Badwal SPS (2011) Electrochemical performance of ceria-gadolinia electrolyte based direct carbon fuel cells. Solid State Ionics 194:46-2 CrossRef
    43. Horita T, Sakai N, Kawada T, Yokokawa H, Dokiya M (1995) An investigation of anodes for direct-oxidation of carbon in solid oxide fuel cells. J Electrochem Soc 142(8):2621-624 CrossRef
    44. Siengchum T, Guzman F, Chuang SSC (2012) Analysis of gas products from direct utilization of carbon in a solid oxide fuel cell. J Power Sources 213:375-81 CrossRef
    45. Vutetakis DG, Skidmore DR, Byker HJ (1987) Electrochemical oxidation of molten carbonate-coal slurries. J Electrochem Soc 134(12):3027-035 CrossRef
    46. Chen CC, Maruyama T, Hsieh PH, Selman JR (2010) The reverse Boudouard reaction in direct carbon fuel cells. ECS Trans 28(30):227-39 CrossRef
    47. Jiang C, Irvine JTS (2011) Catalysis and oxidation of carbon in a hybrid direct carbon fuel cell. J Power Sources 196:7318-322 CrossRef
    48. Jiang C, Ma J, Bonaccorso AD, Irvine JTS (2012) Demonstration of high power, direct conversion of waste-derived carbon in a hybrid direct carbon fuel cell. Energy Environ Sci 5:6973-980 CrossRef
    49. Bonaccorso AD, Irvine JTS (2012) Development of tubular hybrid direct carbon fuel cell. Int J Hydrogen Energy 37:19337-9344 CrossRef
    50. Elleuch A, Boussetta A, Halouani K (2012) Analytical modeling of electrochemical mechanisms in CO2 and CO/CO2 producing direct carbon fuel cell. J Electroanal Chem 668:99-06 CrossRef
    51. Gopalan S, Ye G, Pal UB (2006) Regenerative, coal-based solid oxide fuel cell-electrolyzers. J Power Sources 162:74-0 CrossRef
    52. Javadekar A, Jayakumar A, Pujara R, Vohs JM, Gorte RJ (2012) Molten silver as a direct carbon fuel cell anode. J Power Sources 214:239-43 CrossRef
    53. Ju H, Uhm S, Kim JW, Song RH, Choi H, Lee SH, Lee J (2012) Enhanced anode interface for electrochemical oxidation of solid fuel in direct carbon fuel cells: the role of liquid Sn in mixed state. J Power Sources 198:36-1
    54. Campanari S, Gazzani M, Romano MC (2013) Analysis of direct carbon fuel cell based coal fired power cycles with CO2 capture, J Eng Gas Turb Power-Trans ASME 135(1): 011701 (9 pgs)
    55. Lipilin AS, Balachov II, Dubois LH, Sanjurjo A, McKubre MC, Crouch-Baker S, Hornbostel MD, Tanzella FL (2007) Liquid anode electrochemical cell, USA patent, US 2007/0269688 A1 (2007)
    56. Nabae Y, Pointon KD, Irvine JTS (2008) Electrochemical oxidation of solid carbon in hybrid DCFC with solid oxide and molten carbonate binary electrolyte. Energy Environ Sci 1:148-55 CrossRef
    57. Li X, Zhu Z, De Marco R, Bradley J, Dicks A (2010) Evaluation of raw coals as fuels for direct carbon fuel cells. J Power Sources 195:4051-058 CrossRef
    58. Stanmore BR, Brilhac JF, Gilot P (2001) The oxidation of soot: a review of experiments, mechanisms and models. Carbon 39:2247-268 CrossRef
    59. Kapteijn F, Peer O, Moulijn JA (1986) Kinetics of the alkali carbonate catalysed gasification of carbon. 1. CO2 gasification. Fuel 65:1371-378 CrossRef
    60. Mckee DW (1982) Gasification of graphite in carbon dioxide and water vapor—the catalytic effects of alkali metal salts. Carbon 20(1):59-6 CrossRef
    61. McKee DW (1983) Mechanisms of the alkali metal catalysed gasification of carbon. Fuel 62:170-75 CrossRef
    62. Kouchachvili L, Ikura M (2011) Performance of direct carbon fuel cell. Int J Hydrogen Energy 36:10263-0268 CrossRef
    63. Alkali carbonate phase diagram (2011) Center for Research in Computational Thermochemistry (CRCT), Ecole Polytechnique de Montreal (Quebec, Canada) http://www.crct.polymtl.ca/fact/phase_diagram.php?file=K2CO3-Li2CO3.jpg&dir=FTsalt, accessed May 2013
    64. Jin G, Iwaki H, Arai N, Kitagawa K (2005) Study on the gasification of wastepaper/carbon dioxide catalyzed by molten carbonate salts. Energy 30:1192-203 CrossRef
    65. Lee C-G, Hur H (2011) Gasification of bamboo carbon with molten alkali carbonate. Korean J Chem Eng 28(7):1539-545 CrossRef
    66. Chen CC, Maruyama T, Hsieh PH, Selman JR (2012) Wetting behavior of carbon in molten carbonate. J Electrochem Soc 159(10):D597–D604 CrossRef
    67. Peelen WHA, Olivry M, Au SF, Fehribach JD, Hemmes K (2000) Electrochemical oxidation of carbon in a 62/38 mol% Li/K carbonate melt. J Appl Electrochem 30:1389-395 CrossRef
    68. Cao D, Wang G, Wang C, Wang J, Lu T (2010) Enhancement of electrooxidation activity of activated carbon for direct carbon fuel cell. Int J Hydrogen Energy 35:1778-782 CrossRef
    69. Nagase K, Shimodaira T, Itoh M, Zheng Y (1999) Kinetics and mechanisms of the reverse Boudouard reaction over metal carbonates in connection with the reaction of solid carbon with metal carbonates. Phys Chem Chem Phys 1:5659-664 CrossRef
    70. Neeft JPA, Makkee M, Moulijn JA (1996) Catalysts for the oxidation of soot from diesel exhaust gases. I. An exploratory study. Appl Catal B Environ 8:57-8 CrossRef
    71. Malinowska B, Cassir M, Delcorso F, Devynck J (1995) Behaviour of nickel species in molten Li2CO3-?Na2CO3-?K2CO3. Part 1. Thermodynamic approach and electrochemical characterization under P(CO2)-- atm. J Electroanal Chem 389:21-9 CrossRef
    72. Peelen WHA, Hemmes K, de Wit JHW (1997) Diffusion constants and solubility values of Co2+ and Ni2+ in Li/Na and Li/K carbonate melts. Electrochim Acta 42(15):2389-397 CrossRef
    73. Qingfeng L, Borup F, Petrushina I, Bjerrum NJ (1999) Complex formation during dissolution of metal oxides in molten alkali carbonates. J Electrochem Soc 146(7):2449-454 CrossRef
    74. Choi J-S, Yun J-S, Kwon H-H, Lim T-H, Hong S-A, Lee H-I (2005) Effect of lithium carbonate on nickel catalysts for direct internal reforming MCFC. J Power Sources 145:652-58 CrossRef
    75. Boden A, Yoshikawa M, Lindbergh G (2007) The solubility of Ni in molten Li2CO3-Na2CO3 (52/48) in H2/H2O/CO2 atmosphere. J Power Sources 166:59-3 CrossRef
    76. Cassir M, Chauvaut V, Alfarra A, Albin V (2000) Study of cerium species in molten Li2CO3-Na2CO3 in the conditions used in molten carbonate fuel cells. Part II: Potentiometric and voltammetric behavior. J Appl Electrochem 30:1415-420 CrossRef
    77. Chauvaut V, Albin A, Schneider H, Cassir M, Ardelean H, Galtayries A (2000) Study of cerium species in molten Li2CO3–Na2CO3 in the conditions used in molten carbonate fuel cells. Part I: Thermodynamic, chemical and surface properties. J Appl Electrochem 30:1405-413 CrossRef
    78. Tao T (2011) Direct coal conversion in liquid tin anode SOFC, 12th Annual SECA Workshop, Pittsburg, PA, July 25-8, 2011 (http://www.netl.doe.gov/publications/proceedings/11/seca/index.html)
    79. Wee J-H (2010) Contribution of fuel cell systems to CO2 emission reduction in their application fields. Renew Sustain Energ Rev 14:735-44 CrossRef
    80. Solid Energy Conversion Alliance (SECA), Department of Energy (USA) coalpower/fuelcells/index.html" class="a-plus-plus">http://www.netl.doe.gov/technologies/coalpower/fuelcells/index.html, accessed May 2013
    81. Chen YH, Chen CY, Lee SC (2010) Technology forecasting of new clean energy: the example of hydrogen energy and fuel cell. Afr J Bus Manag 4(7):1372-380
    82. Kuramochi T, Turkenburg W, Faaij A (2011) Competitiveness of CO2 capture from an industrial solid oxide fuel cell combined heat and power system in the early stage of market introduction. Fuel 90(3):958-73 fuel.2010.10.028" target="_blank" title="It opens in new window">CrossRef
    83. Li C, Shi Y, Cai N (2010) Performance improvement of direct carbon fuel cell by introducing catalytic gasification process. J Power Sources 195:4660-666 CrossRef
    84. Massachusetts Institute of Technology (2007) The future of coal, MIT (Cambridge, MA, USA)
    85. Ordowich C, Chase J, Steele D, Malhotra R, Harada M, Makino K (2012) Applying learning curve to modeling future coal and gas power generation technologies. Energy Fuels 26:753-66 CrossRef
  • 作者单位:L. Deleebeeck (1)
    K. K. Hansen (1)

    1. Department of Energy Conversion and Storage, Technical University of Denmark (DTU), Ris? Campus, Frederiksborgvej 399, PO Box 49, 4000, Roskilde, Denmark
  • ISSN:1433-0768
文摘
As coal is expected to continue to dominate power generation demands worldwide, it is advisable to pursue the development of more efficient coal power generation technologies. Fuel cells show a much higher fuel utilization efficiency, emit fewer pollutants (NO x , SO x ), and are more easily combined with carbon capture and storage (CCS) due to the high purity of CO2 emitted in the exhaust gas. Direct carbon (or coal) fuel cells (DCFCs) are directly fed with solid carbon to the anode chamber. The fuel cell converts the carbon at the anode and the oxygen at the cathode into electricity, heat and reaction products. The use of an external gasifier and a fuel cell operating on syngas (e.g. integrated gasification fuel cells) is briefly discussed for comparative purposes. A wide array of DCFC types have been investigated over the last 20?years. Here, the diversity of pre-commercialization DCFC research efforts is discussed on the fuel cell stack and system levels. The range of DCFC types can be roughly broken down into four fuel cell types: aqueous hydroxide, molten hydroxide, molten carbonate and solid oxide fuel cells. Emphasis is placed on the electrochemical reactions occurring at the anode and the proposed mechanism(s) of these reactions for molten carbonate, solid oxide and hybrid direct carbon fuel cells. Additionally, the criteria of choosing the ‘best-DCFC technology is explored, including system design (continuous supply of solid fuel), performance (power density, efficiency), environmental burden (fresh water consumed, solid waste produced, CO2 emitted, ease of combination with CCS) and economics (levelized cost of electricity).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700