Neural correlates of tactile perception during pre-, peri-, and post-movement
详细信息    查看全文
  • 作者:Georgiana Juravle ; Tobias Heed ; Charles Spence…
  • 关键词:Tactile ; Visual ; Event ; related potentials ; Goal ; directed movement
  • 刊名:Experimental Brain Research
  • 出版年:2016
  • 出版时间:May 2016
  • 年:2016
  • 卷:234
  • 期:5
  • 页码:1293-1305
  • 全文大小:1,214 KB
  • 参考文献:Armatas CA, Summers JJ, Bradshaw JL (1994) Mirror movements in normal adult subjects. J Clin Exp Neuropsychol 16:405–413. doi:10.​1080/​0168863940840265​1 CrossRef PubMed
    Augurelle A-S, Smith AM, Lejeune T, Thonnard J-L (2003) Importance of cutaneous feedback in maintaining a secure grip during manipulation of hand-held objects. J Neurophysiol 89:665–671. doi:10.​1152/​jn.​00249.​2002 CrossRef PubMed
    Baldauf D, Deubel H (2008) Properties of attentional selection during the preparation of sequential saccades. Exp Brain Res 184:411–425. doi:10.​1007/​s00221-007-1114-x CrossRef PubMed
    Baldauf D, Deubel H (2009) Attentional selection of multiple goal positions before rapid hand movement sequences: an event-related potential study. J Cogn Neurosci 21:18–29. doi:10.​1162/​jocn.​2008.​21021 CrossRef PubMed
    Baldauf D, Wolf M, Deubel H (2006) Deployment of visual attention before sequences of goal-directed hand movements. Visi Res 46:4355–4374. doi:10.​1016/​j.​visres.​2006.​08.​021 CrossRef
    Bays PM, Wolpert DM (2007) Computational principles of sensorimotor control that minimize uncertainty and variability. J Physiol 578:387–396. doi:10.​1113/​jphysiol.​2006.​120121 CrossRef PubMed PubMedCentral
    Bosbach S, Cole J, Prinz W, Knoblich G (2005) Inferring another’s expectation from action: the role of peripheral sensation. Nat Neurosci 8:1295–1297. doi:10.​1038/​nn1535 CrossRef PubMed
    Brochier T, Boudreau MJ, Paré M, Smith AM (1999) The effects of muscimol inactivation of small regions of motor and somatosensory cortex on independent finger movements and force control in the precision grip. Exp Brain Res 128:31–40. doi:10.​1007/​s002210050814 CrossRef PubMed
    Brozzoli C, Pavani F, Urquizar C et al (2009) Grasping actions remap peripersonal space. NeuroReport 20:913–917. doi:10.​1097/​WNR.​0b013e32832c0b9b​ CrossRef PubMed
    Chapman CE, Beauchamp E (2006) Differential controls over tactile detection in humans by motor commands and peripheral reafference. J Neurophysiol 96:1664–1675. doi:10.​1152/​jn.​00214.​2006 CrossRef PubMed
    Chen J-T, Lin Y-Y, Shan D-E et al (2005) Effect of transcranial magnetic stimulation on bimanual movements. J Neurophysiol 93:53–63. doi:10.​1152/​jn.​01063.​2003 CrossRef PubMed
    Collins T, Heed T, Röder B (2010) Visual target selection and motor planning define attentional enhancement at perceptual processing stages. Front Hum Neurosci 4:14. doi:10.​3389/​neuro.​09.​014.​2010 CrossRef PubMed PubMedCentral
    Delorme A, Makeig S (2004) EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J Neurosci Method 134(1):9–21 CrossRef
    Desmedt JE, Tomberg C (1985) Mapping early somatosensory evoked potentials in selective attention: critical evaluation of control conditions used for titrating by difference the cognitive P30, P40, P100 and N140. Electroencephalogr Clin Neurophysiol 74:321–346CrossRef
    Desmurget M, Grafton S (2000) Forward modeling allows feedback control for fast reaching movements. Trends Cogn Sci 4:423–431. doi:10.​1016/​S1364-6613(00)01537-0 CrossRef PubMed
    Deubel H, Schneider W (1996) Saccade target selection and object recognition: evidence for a common attentional mechanism. Vis Res 36:1827–1837. doi:10.​1016/​0042-6989(95)00294-4 CrossRef PubMed
    Deubel H, Schneider W, Paprotta I (1998) Selective dorsal and ventral processing: evidence for a common attentional mechanism in reaching and perception. Vis cogn 5:81–107. doi:10.​1080/​713756776 CrossRef
    Eimer M, Forster B, Fieger A, Harbich S (2004) Effects of hand posture on preparatory control processes and sensory modulations in tactile-spatial attention. Clin Neurophysiol 115:596–608. doi:10.​1016/​j.​clinph.​2003.​10.​015 CrossRef PubMed
    Eimer M, Forster B, Prabhu G (2005) Covert manual response preparation triggers attentional shifts: ERP evidence for the premotor theory of attention. Neuropsychologia 43:957–966. doi:10.​1016/​j.​neuropsychologia​.​2004.​08.​011 CrossRef PubMed PubMedCentral
    Forster B, Eimer M (2005) Covert attention in touch: behavioral and ERP evidence for costs and benefits. Psychophysiology 42:171–179. doi:10.​1111/​j.​1469-8986.​2005.​00268.​x CrossRef PubMed
    Forster B, Eimer M (2007) Covert unimanual response preparation triggers attention shifts to effectors rather than goal locations. Neurosci Lett 419:142–146. doi:10.​1016/​j.​neulet.​2007.​04.​027 CrossRef PubMed
    Gallace A, Zeeden S, Röder B, Spence C (2010) Lost in the move? Secondary task performance impairs tactile change detection on the body. Conscious Cogn 19:215–229. doi:10.​1016/​j.​concog.​2009.​07.​003 CrossRef PubMed
    Gherri E, Eimer M (2008) Links between eye movement preparation and the attentional processing of tactile events: an event-related brain potential study. Clin Neurophysiol 119:2587–2597. doi:10.​1016/​j.​clinph.​2008.​07.​214 CrossRef PubMed PubMedCentral
    Gherri E, Eimer M (2010) Manual response preparation disrupts spatial attention: an electrophysiological investigation of links between action and attention. Neuropsychologia 48:961–969. doi:10.​1016/​j.​neuropsychologia​.​2009.​11.​017 CrossRef PubMed PubMedCentral
    Gherri E, Forster B (2012) The orienting of attention during eye and hand movements: ERP evidence for similar frame of reference but different spatially specific modulations of tactile processing. Biol Psychol 91:172–184. doi:10.​1016/​j.​biopsycho.​2012.​06.​007 CrossRef PubMed
    Gherri E, Van Velzen J, Eimer M (2007) Dissociating effector and movement direction selection during the preparation of manual reaching movements: evidence from lateralized ERP components. Clin Neurophysiol 118:2031–2049. doi:10.​1016/​j.​clinph.​2007.​06.​003 CrossRef PubMed PubMedCentral
    Gherri E, Van Velzen J, Eimer M (2009) The instructed context of a motor task modulates covert response preparation and shifts of spatial attention. Psychophysiology 46:655–667. doi:10.​1111/​j.​1469-8986.​2009.​00800.​x CrossRef PubMed PubMedCentral
    Gillmeister H, Forster B (2012) Hands behind your back: effects of arm posture on tactile attention in the space behind the body. Exp Brain Res 216:489–497. doi:10.​1007/​s00221-011-2953-z CrossRef PubMed
    Heed T, Röder B (2010) Common anatomical and external coding for hands and feet in tactile attention: evidence from event-related potentials. J Cogn Neurosci 22:184–202. doi:10.​1162/​jocn.​2008.​21168 CrossRef PubMed
    Heinze HJ, Luck SJ, Mangun GR, Hillyard SA (1990) Visual event-related potentials index focused attention within bilateral stimulus arrays. I. Evidence for early selection. Electroencephalogr Clin Neurophysiol 75:511–527. doi:10.​1016/​0013-4694(90)90138-A CrossRef PubMed
    Jackson GM, German K, Peacock K (2002) Functional coupling between the limbs during bimanual reach-to-grasp movements. Hum Mov Sci 21:5–21. doi:10.​1016/​S0167-9457(02)00118-5 CrossRef
    James W (1890) The principles of psychology. Holt, New YorkCrossRef
    Jeannerod M (1994) The representing brain: neural correlates of motor intention and imagery. Behav Brain Sci 17:187–202. doi:10.​1017/​S0140525X0003416​6 CrossRef
    Juravle G, Deubel H (2009) Action preparation enhances the processing of tactile targets. Exp Brain Res 198:301–311. doi:10.​1007/​s00221-009-1819-0 CrossRef PubMed
    Juravle G, Deubel H, Tan HZ, Spence C (2010) Changes in tactile sensitivity over the time-course of a goal-directed movement. Behav Brain Res 208:391–401. doi:10.​1016/​j.​bbr.​2009.​12.​009 CrossRef PubMed
    Juravle G, Deubel H, Spence C (2011) Attention and suppression affect tactile perception in reach-to-grasp movements. Acta Psychol (Amst) 138:302–310. doi:10.​1016/​j.​actpsy.​2011.​08.​001 CrossRef
    Juravle G, McGlone F, Spence C (2013) Context-dependent changes in tactile perception during movement execution. Front Psychol 4:913. doi:10.​3389/​fpsyg.​2013.​00913 CrossRef PubMed PubMedCentral
    Kelso J, Southard D, Goodman D (1979) On the nature of human interlimb coordination. Science 203:1029–1031. doi:10.​1126/​science.​424729 CrossRef PubMed
    Konagaya Y, Mano Y, Konagaya M (1990) Magnetic stimulation study in mirror movements. J Neurol 237:107–109. doi:10.​1007/​BF00314672 CrossRef PubMed
    Kühn S, Nenchev I, Haggard P et al (2011) Whodunnit? Electrophysiological correlates of agency judgements. PLoS One 6:e28657. doi:10.​1371/​journal.​pone.​0028657 CrossRef PubMed PubMedCentral
    Ley P, Röder B (2014) Dissociating effects of movement preparation and spatial attention on visual processing: evidence from event-related potentials. Multisens Res 27:139–160. doi:10.​1163/​22134808-00002445 CrossRef PubMed
    Luck SJ (2005) An introduction to the event-related potential technique. MIT Press, Cambridge
    Mangun GR, Hillyard SA (1988) Spatial gradients of visual attention: behavioral and electrophysiological evidence. Electroencephalogr Clin Neurophysiol 70:417–428. doi:10.​1016/​0013-4694(88)90019-3 CrossRef PubMed
    Monzée J, Lamarre Y, Smith AM (2003) The effects of digital anesthesia on force control using a precision grip. J Neurophysiol 89:672–683. doi:10.​1152/​jn.​00434.​2001 CrossRef PubMed
    Nowak DA, Hermsdorfer J, Glasauer S et al (2001) The effects of digital anaesthesia on predictive grip force adjustments during vertical movements of a grasped object. Eur J Neurosci 14:756–762. doi:10.​1046/​j.​0953-816x.​2001.​01697.​x CrossRef PubMed
    Nowak DA, Glasauer CAS, Hermsdörfer J (2003) Grip force efficiency in long-term deprivation of somatosensory feedback. NeuroReport 14:1803–1807. doi:10.​1097/​01.​wnr.​0000087506.​22247 CrossRef PubMed
    Oostenveld R, Praamstra P (2001) The five percent electrode system for high-resolution EEG and ERP measurements. Clin Neurophysiol 112:713–719. doi:10.​1016/​S1388-2457(00)00527-7 CrossRef PubMed
    Rizzolatti G, Craighero L (2010) Premotor theory of spatial attention. Scholarpedia 5(1):6311CrossRef
    Rizzolatti G, Riggio L, Sheliga B (1994) Space and selective attention. In: Umiltà C, Moscovitch M (eds) Atten. Perform. XV. MIT Press, Cambridge, pp 231–265
    Röder B, Rösler F, Hennighausen E, Näcker F (1996) Event-related potentials during auditory and somatosensory discrimination in sighted and blind human subjects. Cogn Brain Res 4:77–93. doi:10.​1016/​0926-6410(96)00024-9 CrossRef
    Rorden C, Greene K, Sasine GM, Baylis GC (2002) Enhanced tactile performance at the destination of an upcoming saccade. Curr Biol 12:1429–1434. doi:10.​1016/​S0960-9822(02)01039-4 CrossRef PubMed
    Rossini PM, Babiloni C, Babiloni F et al (1999) “Gating” of human short-latency somatosensory evoked cortical responses during execution of movement. A high resolution electroencephalography study. Brain Res 843:161–170. doi:10.​1016/​S0006-8993(99)01716-3 CrossRef PubMed
    Spence C (2012) Attention. In: Ramachandran VS (ed) Encycl. Hum. Behav., 2nd edn. Elsevier, Oxford, pp 211–217CrossRef
    Thonnard J-L, Detrembleur C, Van den Bergh PYK (1997) Assessment of hand function in a patient with chronic sensory demyelinating neuropathy. Neurology 49:253–257. doi:10.​1212/​WNL.​49.​1.​253 CrossRef PubMed
    Timm J, Sanmiguel I, Keil J et al (2014) Motor intention determines sensory attenuation of brain responses to self-initiated sounds. J Cogn Neurosci 26:1481–1489. doi:10.​1162/​jocn_​a_​00552 CrossRef PubMed
    Urbano A, Babiloni C, Onorati P et al (1998) Responses of human primary sensorimotor and supplementary motor areas to internally triggered unilateral and simultaneous bilateral one-digit movements. A high-resolution EEG study. Eur J Neurosci 10:765–770. doi:10.​1046/​j.​1460-9568.​1998.​00072.​x CrossRef PubMed
    van der Lubbe RH, Wauschkuhn B, Wascher E et al (2000) Lateralized EEG components with direction information for the preparation of saccades versus finger movements. Exp Brain Res 132:163–178CrossRef PubMed
    Van Der Lubbe RHJ, Neggers SFW, Verleger R, Kenemans JL (2006) Spatiotemporal overlap between brain activation related to saccade preparation and attentional orienting. Brain Res 1072:133–152. doi:10.​1016/​j.​brainres.​2005.​11.​087 CrossRef PubMed
    van Elk M, van Schie HT, Neggers SFW, Bekkering H (2010) Neural and temporal dynamics underlying visual selection for action. J Neurophysiol 104:972–983. doi:10.​1152/​jn.​01079.​2009 CrossRef PubMed
    van Velzen J, Forster B, Eimer M (2002) Temporal dynamics of lateralized ERP components elicited during endogenous attentional shifts to relevant tactile events. Psychophysiology 39:874–878. doi:10.​1017/​S004857720202014​0 CrossRef PubMed
    Wolpert DM, Flanagan JR (2009) Forward models. In: Bayne T, Cleermans A, Wilken P (eds) Oxford companion to Consciousness. Oxford University Press, Oxford, pp 294–296
    Wolpert DM, Ghahramani Z, Jordan MI (1995) An internal model for sensorimotor integration. Science 269:1880–1882. doi:10.​1126/​science.​7569931 CrossRef PubMed
  • 作者单位:Georgiana Juravle (1) (2) (3)
    Tobias Heed (1)
    Charles Spence (2)
    Brigitte Röder (1)

    1. Biological Psychology and Neuropsychology, Faculty of Psychology and Movement Science, University of Hamburg, Hamburg, Germany
    2. Crossmodal Research Laboratory, Department of Experimental Psychology, Oxford University, Oxford, UK
    3. Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, W34, Martinistr. 52, 20251, Hamburg, Germany
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Biomedicine
    Neurosciences
    Neurology
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1432-1106
文摘
Tactile information is differentially processed over the various phases of goal-directed movements. Here, event-related potentials (ERPs) were used to investigate the neural correlates of tactile and visual information processing during movement. Participants performed goal-directed reaches for an object placed centrally on the table in front of them. Tactile and visual stimulation (100 ms) was presented in separate trials during the different phases of the movement (i.e. preparation, execution, and post-movement). These stimuli were independently delivered to either the moving or resting hand. In a control condition, the participants only performed the movement, while omission (i.e. movement-only) ERPs were recorded. Participants were instructed to ignore the presence or absence of any sensory events and to concentrate solely on the execution of the movement. Enhanced ERPs were observed 80–200 ms after tactile stimulation, as well as 100–250 ms after visual stimulation: These modulations were greatest during the execution of the goal-directed movement, and they were effector based (i.e. significantly more negative for stimuli presented to the moving hand). Furthermore, ERPs revealed enhanced sensory processing during goal-directed movements for visual stimuli as well. Such enhanced processing of both tactile and visual information during the execution phase suggests that incoming sensory information is continuously monitored for a potential adjustment of the current motor plan. Furthermore, the results reported here also highlight a tight coupling between spatial attention and the execution of motor actions.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700