Comparing robust forms of iterative methods of conjugate directions
详细信息    查看全文
  • 作者:A. A. Belov ; N. N. Kalitkin ; L. V. Kuzmina
  • 关键词:systems of linear algebraic equations ; sparse matrices ; iterative methods ; conjugate gradient descents
  • 刊名:Mathematical Models and Computer Simulations
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:8
  • 期:2
  • 页码:155-174
  • 全文大小:1,016 KB
  • 参考文献:1.A. A. Samarskii and E. S. Nikolaev, Numerical Methods for Grid Equations (Nauka, Fizmatlit, Moscow, 1978; Birkhäuser, Basel, 1989).
    2.A. A. Boltnev, N. N. Kalitkin, and O. A. Kacher, “Logarithmically convergent relaxation count,” Dokl. Math. 72, 806–809 (2005).MATH
    3.N. N. Kalitkin and A. A. Belov, “Analogue of the Richardson method for logarithmically converging time marching,” Dokl. Math. 88, 596–600 (2013).MathSciNet CrossRef MATH
    4.D. K. Faddeev and V. N. Faddeeva, Computational Methods of Linear Algebra (Fizmatlit, Moscow, 1960; W. H. Freeman, San Francisco, 1963).MATH
    5.N. S. Bakhvalov, N. P. Zhidkov, and G. M. Kobel’kov, Numerical Methods (Nauka, Moscow, 1987) [in Russian].MATH
    6.A. A. Samarskii and A. V. Gulin, Numerical Methods (Nauka, Moscow, 1989) [in Russian].
    7.E. Craig, “The N-step iteration procedures,” J. Math. Phys. 34, 64–73 (1955).MathSciNet CrossRef MATH
    8.A. A. Abramov, V. I. Ul’yanova, and L. F. Yukhno, “On the application of Craig’s method to the solution of linear equations with inexact initial data,” Comput. Math. Math. Phys. 42, 1693–1700 (2002).MathSciNet MATH
    9.N. N. Kalitkin and L. V. Kuz’mina, “Improved form of the conjugate gradient method,” Math. Models Comput. Simul. 4, 68–81 (2012).MathSciNet CrossRef
    10.N. N. Kalitkin and L. V. Kuz’mina, “On the Craig method convergence for linear algebraic systems,” Math. Models Comput. Simul. 4, 509–526 (2012).MathSciNet CrossRef
    11.N. N. Kalitkin and L. V. Kuz’mina, “Improved forms of iterative methods for systems of linear algebraic equations,” Dokl. Math. 88, 489–494 (2013).MathSciNet CrossRef MATH
    12.N. N. Kalitkin and L. V. Kuz’mina, “One-step truncated gradient descents,” Math. Models Comput. Simul. 7, 13–23 (2015).MathSciNet CrossRef
    13.Y. Saad, Iterative Methods for Sparse Linear Systems (SIAM, 2003).CrossRef MATH
    14.Matlab Documentation Center. http://​www.​mathworks.​com/​help/​matlab/​index.​html
    15.G. Korn and T. Korn, Mathematical Handbook for Scientists and Engineers (McGraw-Hill, New York, 1968).MATH
    16.E. A. Alshina, A. A. Boltnev, and O. A. Kacher, “Empirical improvement of elementary gradient methods,” Mat. Model. 17 (6), 43–57 (2005).MathSciNet
  • 作者单位:A. A. Belov (1)
    N. N. Kalitkin (1)
    L. V. Kuzmina (1)

    1. Faculty of Physics, Moscow State University, Moscow, Russia
  • 刊物类别:Mathematics and Statistics
  • 刊物主题:Mathematics
    Mathematical Modeling and IndustrialMathematics
    Simulation and Modeling
    Russian Library of Science
  • 出版者:MAIK Nauka/Interperiodica distributed exclusively by Springer Science+Business Media LLC.
  • ISSN:2070-0490
文摘
Simple and robust formulas of the conjugate direction method for symmetric matrices and of the symmetrized conjugate gradient method for nonsymmetric matrices have been constructed. These methods were compared with robust forms of the conjugate gradient method and the Craig method using test problems. It is shown that stability for the round-off error can be attained when recurrent variants of the methods are used. The most reliable and efficient method for symmetric signdefinite and indefinite matrices appears to be the method of conjugate residuals. For nonsymmetric matrices, the best results have been obtained by the method of symmetrized conjugate gradients. These two methods are recommended for writing standard programs. A reliable criterion has also been constructed for the termination of the calculation on reaching background values due to the round-off errors.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700