Reference frame access under the effects of great earthquakes: a least squares collocation approach for non-secular post-seismic evolution
详细信息    查看全文
  • 作者:D. D. Gómez ; D. A. Piñón ; R. Smalley Jr. ; M. Bevis ; S. R. Cimbaro…
  • 关键词:Least squares collocation ; Earthquake deformation field interpolation ; GPS ; Reference frames ; Time ; dependent positioning
  • 刊名:Journal of Geodesy
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:90
  • 期:3
  • 页码:263-273
  • 全文大小:2,766 KB
  • 参考文献:Aagaard BT, Knepley MG, Williams CA (2013) A domain decomposition approach to implementing fault slip in finite-element models of quasi-static and dynamic crustal deformation. J Geophys Res Solid Earth 118:3059–3079. doi:10.​1002/​jgrb.​50217 CrossRef
    Altamimi Z, Collilieux X, Legrand J et al (2007) ITRF2005: a new release of the international terrestrial reference frame based on time series of station positions and earth orientation parameters. J Geophys Res Solid Earth 112:B09401. doi:10.​1029/​2007JB004949 CrossRef
    Bevis M, Brown A (2014) Trajectory models and reference frames for crustal motion geodesy. J Geod 88:283–311. doi:10.​1007/​s00190-013-0685-5 CrossRef
    Drewes H (2009) The actual plate kinematic and crustal deformation model APKIM2005 as basis for a non-rotating ITRF. In: Geodetic reference frames. Springer, Berlin, pp 95–99
    Drewes H, Heidbach O (2012) The 2009 horizontal velocity field for South America and the Caribbean. In: Kenyon S, Pacino MC, Marti U (eds) Geodesy for planet earth. Springer, Berlin, pp 657–664
    Drewes H, Sánchez L (2013) Modelado de deformaciones sísmicas en el mantenimiento de marcos geodésicos de referencia. http://​www.​sirgas.​org/​fileadmin/​docs/​Boletines/​Bol18/​36_​Drewes_​Sanchez_​2013_​Modelado_​deformaciones_​sismicas.​pdf . Accessed 4 January 2014
    Drewes H, Sánchez L (2014) Actualización del modelo de velocidades SIRGAS. http://​www.​sirgas.​org/​fileadmin/​docs/​Boletines/​Bol19/​60_​Drewes_​et_​al_​2014_​ActualizacionVEM​OS.​pdf . Accessed 2 May 2015
    Dziewonski AM, Anderson DL (1981) Preliminary reference Earth model. Phys Earth Planet Inter 25:297–356
    Gómez D, Smalley R, Langston C et al (2015) Co-seismic deformation of the 2010 Maule, Chile earthquake: validating a least squares collocation interpolation. GeoActa 40(1), 25–35
    Hayes GP, Wald DJ, Johnson RL (2012) Slab1. 0: a three-dimensional model of global subduction zone geometries. J Geophys Res Solid Earth 1978–2012: doi:10.​1029/​2011JB008524
    Hu Y, Wang K, He J et al (2004) Three-dimensional viscoelastic finite element model for postseismic deformation of the great 1960 Chile earthquake. J Geophys Res Solid Earth 109:B12403. doi:10.​1029/​2004JB003163 CrossRef
    Khazaradze G, Wang K, Klotz J et al (2002) Prolonged post-seismic deformation of the 1960 great Chile earthquake and implications for mantle rheology. Geophys Res Lett 29:7–1CrossRef
    Ligas M, Kulczycki M (2010) Simple spatial prediction-least squares prediction, simple kriging, and conditional expectation of normal vector. Geod Cartogr 59:69–81
    Lin YN, Sladen A, Ortega-Culaciati F et al (2013) Coseismic and postseismic slip associated with the 2010 Maule earthquake, Chile: characterizing the Arauco Peninsula barrier effect: characterizing Arauco barrier effect. J Geophys Res Solid Earth 118:3142–3159. doi:10.​1002/​jgrb.​50207 CrossRef
    Lorito S, Romano F, Atzori S et al (2011) Limited overlap between the seismic gap and coseismic slip of the great 2010 Chile earthquake. Nat Geosci 4:173–177. doi:10.​1038/​ngeo1073 CrossRef
    Maerten F (2005) Inverting for slip on three-dimensional fault surfaces using angular dislocations. Bull Seismol Soc Am 95:1654–1665. doi:10.​1785/​0120030181 CrossRef
    Moreno M, Melnick D, Rosenau M et al (2012) Toward understanding tectonic control on the Mw 8.8 2010 Maule Chile earthquake. Earth Planet Sci Lett 321–322:152–165. doi:10.​1016/​j.​epsl.​2012.​01.​006 CrossRef
    Okada Y (1985) Surface deformation due to shear and tensile faults in a half-space. Bull Seismol Soc Am 75:1135–1154
    Pollitz FF (1996) Coseismic deformation from earthquake faulting on a layered spherical Earth. Geophys J Int 125:1–14CrossRef
    Pollitz FF, Brooks B, Tong X et al (2011) Coseismic slip distribution of the February 27, 2010 Mw 8.8 Maule, Chile earthquake: Chile earthquake coseismic slip. Geophys Res Lett 38. doi:10.​1029/​2011GL047065
    Seemüller W, Seitz M, Sánchez L, Drewes H (2009) The position and velocity solution SIR09P01 of the IGS Regional Network Associate Analysis Centre for SIRGAS (IGS RNAAC SIR). Munich Ger Dtsch Geod Forschungsinstitut Rep 85:96
    Snay RA, Freymueller JT, Pearson C (2013) Crustal motion models developed for version 3.2 of the horizontal time-dependent positioning utility. J Appl Geod. doi:10.​1515/​jag-2013-0005
    Tong X, Sandwell D, Luttrell K, et al (2010) The 2010 Maule, Chile earthquake: downdip rupture limit revealed by space geodesy: downdip rupture maule, Chile earthquake. Geophys Res Lett 37. doi:10.​1029/​2010GL045805
    Vieira SR, de Carvalho JRP, Ceddia MB, González AP (2010) Detrending non stationary data for geostatistical applications. Bragantia 69:01–08CrossRef
    Wang K, Hu Y, Bevis M et al (2007) Crustal motion in the zone of the 1960 Chile earthquake: detangling earthquake-cycle deformation and forearc-sliver translation. Geochem Geophys Geosyst 8:Q10010. doi:10.​1029/​2007GC001721
    Wessel P, Smith WH (1998) New, improved version of generic mapping tools released. Eos Trans Am Geophys Union 79:579–579CrossRef
    Zweck C, Freymueller JT, Cohen SC (2002) Three-dimensional elastic dislocation modeling of the postseismic response to the 1964 Alaska earthquake. J Geophys Res Solid Earth 1978–2012 107:ECV-1
  • 作者单位:D. D. Gómez (1) (2)
    D. A. Piñón (2) (3)
    R. Smalley Jr. (1)
    M. Bevis (4)
    S. R. Cimbaro (2)
    L. E. Lenzano (5) (6)
    J. Barón (5)

    1. Center for Earthquake Research and Information, The University of Memphis, 3890 Central Ave, Memphis, TN, 38152, USA
    2. Dirección de Geodesia, Instituto Geográfico Nacional, Avda. Cabildo, 381 C1426, AAD, Ciudad Autónoma de Buenos Aires, Republic of Argentina
    3. RMIT University, 402 Swanston St, Melbourne, VIC, 3000, Australia
    4. School of Earth Sciences, Ohio State University, 281 W. Lane Ave., Columbus, OH, 43210, USA
    5. International Center for Earth Sciences (ICES), Centro Universitario, Universidad Nacional de Cuyo, Mendoza, Mendoza Province, Republic of Argentina
    6. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales (IANIGLA) CONICET, Universidad Nacional de Cuyo, Mendoza, Mendoza Province, Republic of Argentina
  • 刊物类别:Earth and Environmental Science
  • 刊物主题:Earth sciences
    Geophysics and Geodesy
    Mathematical Applications in Geosciences
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1432-1394
文摘
The 2010, (Mw 8.8) Maule, Chile, earthquake produced large co-seismic displacements and non-secular, post-seismic deformation, within latitudes 28\(^{\circ }\)S–40\(^{\circ }\)S extending from the Pacific to the Atlantic oceans. Although these effects are easily resolvable by fitting geodetic extended trajectory models (ETM) to continuous GPS (CGPS) time series, the co- and post-seismic deformation cannot be determined at locations without CGPS (e.g., on passive geodetic benchmarks). To estimate the trajectories of passive geodetic benchmarks, we used CGPS time series to fit an ETM that includes the secular South American plate motion and plate boundary deformation, the co-seismic discontinuity, and the non-secular, logarithmic post-seismic transient produced by the earthquake in the Posiciones Geodésicas Argentinas 2007 (POSGAR07) reference frame (RF). We then used least squares collocation (LSC) to model both the background secular inter-seismic and the non-secular post-seismic components of the ETM at the locations without CGPS. We tested the LSC modeled trajectories using campaign and CGPS data that was not used to generate the model and found standard deviations (95 % confidence level) for position estimates for the north and east components of 3.8 and 5.5 mm, respectively, indicating that the model predicts the post-seismic deformation field very well. Finally, we added the co-seismic displacement field, estimated using an elastic finite element model. The final, trajectory model allows accessing the POSGAR07 RF using post-Maule earthquake coordinates within 5 cm for \(\sim \)91 % of the passive test benchmarks. Keywords Least squares collocation Earthquake deformation field interpolation GPS Reference frames Time-dependent positioning

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700