Heat capacities of crystalline and glassy lithium metaphosphate up to the transition region
详细信息    查看全文
  • 作者:J. Rocherullé ; J. Massera ; H. Oudadesse…
  • 关键词:Glass ; Crystal ; Heat capacity ; Glass transition
  • 刊名:Journal of Thermal Analysis and Calorimetry
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:123
  • 期:1
  • 页码:401-407
  • 全文大小:621 KB
  • 参考文献:1.Donald IW. Preparation, properties and chemistry of glass- and glass-ceramic-to-metal seals and coatings. J Mater Sci. 1993;28:2841–86.CrossRef
    2.Morena R. Phosphate glasses as alternatives to Pb-based sealing frits. J Non Cryst Solids. 2000;263–264:382–7.CrossRef
    3.Ehrt D, Seeber W. Glass for high performance optics and laser technology. J Non Cryst Solids. 1991;129:19–30.CrossRef
    4.Campbell JH, Suratwala TI. Nd-doped phosphate glasses for high-energy/high-peak-power lasers. J Non Cryst Solids. 2000;263–264:318–41.CrossRef
    5.Franks K, Abrahams I, Georgiou G, Knowles JC. Investigation of thermal parameters and crytallisation in a ternary CaO–Na2O–P2O5-based glass system. Biomaterials. 2001;22(5):497–501.CrossRef
    6.Abou Neel EA, Pickup DM, Valappil SP. Bioactive functional materials: a perspective on -based glasses. J Mater Chem. 2009;19:690–701.CrossRef
    7.Money BK, Hariharan K. Lithium ion conduction in lithium metaphosphate based systems. Appl Phys. 2007;A88:647–52.CrossRef
    8.Money BK, Hariharan K. Crystallization kinetics and phase transformation in superionic lithium metaphosphate (Li2O–P2O5) glass system. J Phys: Condens Matter. 2009;21:115102.
    9.Inaba S, Oda S, Morinaga K. Heat capacity of oxide glasses measured by AC calorimetry. J Non Cryst Solids. 2002;306:42–9.CrossRef
    10.Inaba S, Oda S, Morinaga K. Heat capacity of oxide glasses at high temperature region. J Non Cryst Solids. 2003;325:258–66.CrossRef
    11.Lasocka M. The effect of scanning rate on glass transition temperature of splat-cooled Te85Ge15. J Mater Sci Eng. 1976;23:173–7.CrossRef
    12.Ozawa T. Kinetic analysis of derivative curves in thermal analysis. J Therm Anal. 1976;9:369–73.CrossRef
    13.Hill JO. For better thermal analysis and calorimetry. 3rd ed. ICTAC; 1991.
    14.Shannon RD. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr A. 1976;A32:751–67.CrossRef
    15.Rocherullé J, Trochet F, Marchand R. Kinetics of the NaPO3 glass devitrification studied by differential thermal analysis and X-ray powder diffraction. Key Eng Mater. 2002;206–213:2045–8.CrossRef
    16.Makishima A, Mackenzie JD. Direct calculation of Young’s modulus of glass. J Non-Cryst Solids. 1973;12:35–45.CrossRef
    17.Rocherullé J, Ecolivet C, Poulain M, Verdier P, Laurent Y. Elastic moduli of oxynitride glasses. Extension of Makishima and Mackenzie’s theory. J Non Cryst Solids. 1989;108:187–93.CrossRef
    18.Kingery WD, Bowen HK, Uhlmann DR. Introduction to ceramics. 2nd ed. Singapore: Wiley; 1991. p. 589.
    19.Rocherullé J, Matecki M, Delugeard Y. Heat capacity measurements of MgYSiAlON glasses. J Non Cryst Solids. 1998;238:51–6.CrossRef
    20.Angell CA. Strong and fragile liquids. In: Ngai K, Wright GB, editors. Relaxation in complex systems. Springfield: US Dpt of Commerce; 1985.
    21.Laughlin WT, Uhlmann DR. Viscous flow in simple organic liquids. J Phys Chem. 1972;76(16):2317–25.CrossRef
    22.Lewis GN, Randall M. Thermodynamics. 2nd ed. New York: Mc Graw-Hill; 1961.
    23.Martin RA, Twyman HL, Rees GJ, Smith JM, Barney ER, Smith ME, Hanna JV, Newport RJ. A structural investigation of the alkali metal site distribution within bioactive glass using neutron diffraction and multinuclear solid state NMR. Phys Chem Chem Phys. 2012;14:12105–13.CrossRef
    24.Hudgens JJ. The structure and properties of anhydrous, alkali ultra-phosphate glasses. Retrospective theses and dissertations, Paper 11267; 1994.
    25.Wers E, Oudadesse H. Thermal behaviour and excess entropy of bioactive glasses and Zn-doped glasses. J Therm Anal Calorim. 2014;115(3):2137–2144CrossRef
  • 作者单位:J. Rocherullé (1)
    J. Massera (2)
    H. Oudadesse (1)
    L. Calvez (1)
    J. Trolès (1)
    X. H. Zhang (1)

    1. Glass and Ceramic Group, ISCR, UMR CNRS 6226, University of Rennes, 35042, Rennes, France
    2. Department of Electronics and Communications Engineering, Tampere University of Technology, Korkeakoulunkatu 3, 33720, Tampere, Finland
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Sciences
    Polymer Sciences
    Physical Chemistry
    Inorganic Chemistry
    Measurement Science and Instrumentation
  • 出版者:Akad茅miai Kiad贸, co-published with Springer Science+Business Media B.V., Formerly Kluwer Academic
  • ISSN:1572-8943
文摘
Heat capacity measurements have been conducted by means of DSC on both crystalline and glassy lithium metaphosphate, from room temperature up to the melting region. The heat capacity of the glass is slightly higher than that of the crystal. Contrary to the crystal, in the neighborhood of T g, C p increases rapidly by 10 J mol−1 K−1 conferring to this glass a “fragile character.” Nevertheless, the passage through T m does not show any discontinuity and the values of the glass and of the crystal are identical. The Debye model appears to be realistic to describe the glass heat capacity to temperature dependence. The Debye temperature and frequency were determined by minimizing the R p and χ 2 parameters of the C v fitting curve. From the calculation of the entropy of the liquid at T > T m, the excess entropy of the glass at T g was determined. Using the dependence of the glass transition on the heating rate, we calculated the values of the activation energy for structural relaxation (E relax) and of the lower limit of the glass transition temperature (\( {T_{\text{g}}^{{^\circ }} } \)) which is a thermodynamic parameter, contrary to T g which is a kinetic parameter.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700