Size Distribution for Potentially Unstable Rock Masses and In Situ Rock Blocks Using LIDAR-Generated Digital Elevation Models
详细信息    查看全文
  • 作者:O. Mavrouli ; J. Corominas ; M. Jaboyedoff
  • 关键词:Rockfalls ; Hazard ; Magnitude ; Frequency ; Lidar ; Terrestrial Laser Scanner
  • 刊名:Rock Mechanics and Rock Engineering
  • 出版年:2015
  • 出版时间:July 2015
  • 年:2015
  • 卷:48
  • 期:4
  • 页码:1589-1604
  • 全文大小:2,655 KB
  • 参考文献:Abellán A, Vilaplana JN, Martínez J (2006) Application of a long-range Terrestrial Laser Scanner to a detailed rockfall study at Vall de Núria (Eastern Pyenees, Spain). Eng Geol 88:136-48View Article
    Abellán A, Jaboyedoff M, Oppikofer T, Vilaplana JM (2009) Detection of millimetric deformation using a terrestrial laser scanner: experiment and application to a rockfall event. Nat Hazards Earth Syst Sci 9:365-72View Article
    Aler J, Du Mouza J, Arnould M (1996) Measurement of the fragmentation efficiency of rock mass blasting and its mining applications. Int J Rock Mech Min Sci Geomech 33(2):125-39View Article
    Barton N (2013) Shear strength criteria for rock, rock joints, rock fill and rock masses: Problems and some solutions. J Rock Mech Geotech, Eng. JRMGE Wuhan Elsevier 5:249-61
    Becker J, Stewart C, Radke RJ (2009) LiDAR inpainting from a single image. IEEE 12th International Conference on Computer Vision. Proceedings of International Conference on 3-D Digital Imaging and Modeling (3DIM)
    Birch J S (2006) Using 3DM Analyst mine mapping suite for rock face characterization. In Tonon F, Kottenstette J (ed). Laser and photogrammetric methods for rock face characterization ARMA, 13-2
    Chau KT, Wong RHC, Wu JJ (2002) Coefficient of restitution and rotational motions of rockfall impacts. Int J Rock Mech Min Sci 39:69-7View Article
    Coggan J S, Wetherelt A, Gwynn XP, Flynn ZN (2007) Comparison of hand-mapping with remote data capture systems for effective rock mass characterization. Proceedings of the 11th Congress of ISRM, Lisbon, Portugal
    Copons R (2004) Avaluació de la perillositat de caigudes de blocs a Andorra la Vella (Principat d’Andorra) Ph.D. thesis. UB Barcelona
    Corominas J, Mavrouli O (2013) Estimation quantitative du risque (QRA) pour les batiments lié aux éboulements rocheux progrès et défis. Les dangers naturels en Suisse: pratique et développements. In Comptes rendus de la deuxième Journée de Rencontre sur les Dangers Naturels (Université de Lausanne, 18 février 2011). Mémoire de la Société vaudoise des Sciences naturelles. (Ed) Nicolet P, Derron M-H, Jaboyedoff M. 25:229-42
    Corominas J, Mavrouli O, Moya J (2012) Simplified approach for obtaining the block volume distribution of fragmental rockfalls. ISL-NASL 2012. 11th International & 2nd North American Symposium on Landslides. 3- June Banff: CRC Press. Taylor & Francies Group. 1159-164
    Crosta G, Agliardi F (2003) A methodology for physically based rockfall hazard assessment. Nat Hazard Earth Syst Sci 3:407-22View Article
    Cruden DM, Hungr O (1986) The debris of the Frank Slide and theories of rockslide–avalanche mobility. Can J Earth Sci 23(3):425-32View Article
    Cruden DM, Varnes DJ (1996) Landslide types and processes. In Turner AK, Shuster RL (Eds) Landslides: Investigation and Mitigation. Transp Res Board. Spec Rep 247:36-5
    Délèze JY, Jaboyedoff M, Baillifard F, Rouiller JD (2003) Mattercliff-software for the analysis of spatial distribution of discontinuities in cliffs. EGS-AGU-EUG Joint Assembly, Nice, France, April 2003. Geophys Res Abstr 5:03384
    Derron MH, Blikra L, Jaboyedoff M (2005) Preliminary assessment of landslide and rockfall hazards using a DEM (Oppstadhornet, Norway). Nat Hazards Earth Syst Sci. 285-92
    Di Luzio E, Bianchi Fasani G, Bretscheider A (2013) Potential rockfalls and analysis of slope dynamics in the Palatine Aarchaeological area (Rome, Italy) Geologica Acta, vol 11, N 2, June 2013, 245-64
    Dorren LKA, Domaas U, Kronholm K, Labiouse V (2011) Methods for predicting rockfall trajectories and run-out zones. In: Lambert S, Nicot F (eds). Rockfall engineering. ISTE Ltd./Wiley, 143-73
    Dussauge-Peisser A, Helmstetter C, Grasso JR, Hantz D, Desvarreux P, Jeannin M, Giraud A (2002) Probabilistic approach to rockfall hazard assessment: potential of historical data analysis. Nat Hazards Earth Syst Sci 2:15-6View Article
    Elmouttie M, Poropat G (2011) A method to estimate in situ block size distribution. Rock Mech Rock Eng 37:529-35
    Evans S, Hungr O (1993) The assessment of rockfall hazard at the base of talus slopes. Can Geotech J 30:620-36View Article
    Evans SG, Clague JJ, Woodsworth GJ (1989) The pandemonium creek rock Avalanche, British Columbia. Can Geotech J 26(3):427-46View Article
    Gaich A, Poetsch M, Schubert W (2006) Acquisition and assessment of geometric rock mass feature by true 3D images, in: Proceedings of the 41st U.S. Symposium on rock mechanics (USRNS). 17-1 June, Golden, Colorado
    Gates W, Ortiz L, Florez R (2005) Analysis of Rockfall and Blasting Backbreak Problems, US 550, Molas Pass, CO. 40th U.S. Symposium on Rock Mechanics (USRMS), June 25-9, Anchorage, Alaska
    Grasselli G (2001) Shear Strength of Rock Joints Based on Quantified Surface Description, Ph.D. dissertation, Ecole Polytechnique Fédérale de Lausanne
    Guerin A, Hantz D, Rossetti1 J- P, Jaboyedoff M (2014) Estimating rockfall frequency in a mountain limestone
  • 作者单位:O. Mavrouli (1) (3)
    J. Corominas (1)
    M. Jaboyedoff (2)

    1. Department of Geotechnical Engineering and Geosciences, Technical University of Catalonia, 08034, Barcelona, Spain
    3. International Centre for Numerical Methods in Engineering, CIMNE, 08034, Barcelona, Spain
    2. Centre de recherche sur l’environnement terrestre Faculté des géosciences et de l’environnement, University of Lausanne, 1015, Lausanne, Switzerland
  • 刊物类别:Earth and Environmental Science
  • 刊物主题:Earth sciences
    Geophysics and Geodesy
    Civil Engineering
  • 出版者:Springer Wien
  • ISSN:1434-453X
文摘
In this paper, two analytical procedures which are independent from the existence of empirical data are presented for the calculation of (1) the size distribution of potentially unstable rock masses that expresses the potential rockfall size distribution, including big volumes corresponding to potential rare events with low susceptibility of failure and (2) the in situ block distribution on the slope face. Two approaches are, respectively, used. The first one involves the detection of kinematically unstable surfaces on a digital elevation model (DEM) and on orthophotos and the calculation of the volumes resting on them. For the second one the in situ block volumes formed by the intersection of the existing discontinuity sets are calculated using a high-resolution DEM. The procedures are presented through an application example at the country of Andorra and in particular at the chute of Forat Negre. The results from the first procedure indicate that it is kinematically possible to have mobilized volumes of some thousands of cubic meters; however, these are considered rare events with low susceptibility of failure. The size distribution of potentially unstable rock masses for big volume events was well fitted by a power law with an exponent of ?.5. The in situ block distribution on the slope face from the second procedure, assuming three types of intersection between the joints of the existing discontinuity sets and two extreme cases of discontinuity persistence, was also found to follow a power law, but with an exponent of ?.3. The comparison with the observed in the field block volume distribution on the slope face indicates that in reality discontinuities have a very high persistence and that considering only their visible trace length overestimates volumes, which is conservative.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700