Mapping and characterization of rock discontinuities in a tunnel using 3D terrestrial laser scanning
详细信息    查看全文
  • 作者:Pedro Pazzoto Cacciari ; Marcos Massao Futai
  • 关键词:Discontinuity ; Laser scanner ; Mean trace length ; Frequency ; Tunnel
  • 刊名:Bulletin of Engineering Geology and the Environment
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:75
  • 期:1
  • 页码:223-237
  • 全文大小:2,436 KB
  • 参考文献:Baecher GB (1980) Progressively censored sampling of rock joints traces. Math Geol 12(1):33–40. doi:10.​1007/​BF01039902 CrossRef
    Crosta G (1997) Evaluating rock mass geometry from photogrammetric images. Rock Mech Rock Eng 30(1):35–38. doi:10.​1007/​BF01020112 CrossRef
    Cruden DM (1977) Describing the size of discontinuities. Int J Rock Mech Min Sci Geomech Abstr 14:133–137. doi:10.​1016/​0148-9062(77)90004-3 CrossRef
    Faro Inc. (2013) SCENE V 5.0, Lake Mary, FL
    Fekete S, Diederichs M, Lato M (2010) Geotechnical and operational applications for 3-dimensional laser scanning in drill and blast tunnels. J Tunn Undergr Space Technol 25:614–628. doi:10.​1016/​j.​tust.​2010.​04.​008 CrossRef
    Ferrero AM, Forlani G, Roncella R, Voyat HI (2009) Advanced geostructural survey methods applied to rock mass characterization. Rock Mech Rock Eng 42:631–665. doi:10.​1007/​s00603-008-0010-4 CrossRef
    Gigli G, Casagli N (2011) Semi-automatic extraction of rock mass structural data from high resolution LIDAR point clouds. Int J Rock Mech Min Sci 48:187–198. doi:10.​1016/​j.​ijrmms.​2010.​11.​009 CrossRef
    Haneberg WC (2008) Using close range terrestrial digital photogrammetry for 3-D rock slope modeling and discontinuity mapping in the United States. Bull Eng Geol Environ 67:457–469. doi:10.​1007/​s10064-008-0157-y CrossRef
    International Society for Rock Mechanics (1978) Suggested methods for the quantitative description of discontinuities in rock masses. Int J Rock Mech Min Sci Geomech Abstr 15:319–368. doi:10.​1016/​0148-9062(78)91472-9 CrossRef
    Itasca Consulting Group (2004) 3DEC V 4.1, Minneapolis, MN
    Kemeny J, Turner K, Norton B (2006) LIDAR for rock mass characterization: hardware, software, accuracy and best-practices. In: Proceedings of the workshop on laser and photogrammetric methods for rock face characterization, Golden, CO, pp 49–61
    Kim BH, Cai M, Kaiser PK, Yang HS (2007) Estimation of block size for rock masses with non-persistent joints. Rock Mech Rock Eng 40(2):169–192. doi:10.​1007/​s00603-006-0093-8 CrossRef
    Kulatilake PHSW, Wu TH (1984a) Estimation of mean trace length of discontinuities. Rock Mech Rock Eng 17:215–232. doi:10.​1007/​BF01032335 CrossRef
    Kulatilake PHSW, Wu TH (1984b) The density of discontinuity traces in sampling windows. Int J Rock Mech Min Sci Geomech Abstr 21(6):345–347. doi:10.​1016/​0148-9062(84)90367-X CrossRef
    Lato MJ, Vöge M (2012) Automated mapping of rock discontinuities in 3D lidar and photogrammetry models. Int J Rock Mech Min Sci 54:150–158. doi:10.​1016/​j.​ijrmms.​2012.​06.​003
    Lato MJ, Diederichs MS, Hutchinson DJ, Harrap R (2009) Optimization of LiDAR scanning and processing for automated structural evaluation of discontinuities in rock masses. Int J Rock Mech Min Sci 46:194–199. doi:10.​1016/​j.​ijrmms.​2008.​04.​007 CrossRef
    Lato MJ, Diederichs MS, Hutchinson DJ (2010) Bias correction for view-limited lidar scanning of rock outcrops structural characterization. Rock Mech Rock Eng 43:615–628. doi:10.​1007/​s00603-010-0086-5 CrossRef
    Mah J, Samson C, Mckinnon SD (2011) 3D laser imaging for joint orientation analysis. Int J Rock Mech Min Sci 48:932–941. doi:10.​1016/​j.​ijrmms.​2011.​04.​010 CrossRef
    Mauldon M (1998) Estimating mean fracture trace length and density from observation in convex windows. Rock Mech Rock Eng 31(4):201–216. doi:10.​1007/​s006030050021 CrossRef
    Mauldon M, Dunne WM, Rohrbaugh MB Jr (2001) Circular scanlines and circular windows: new tools for characterizing the geometry of fracture traces. J Struct Geol 23:247–258. doi:10.​1016/​S0191-8141(00)00094-8 CrossRef
    Pahl PJ (1981) Estimating the mean length of discontinuity traces. Int J Rock Mech Min Sci Geomech Abstr 18:221–228. doi:10.​1016/​0148-9062(81)90976-1 CrossRef
    Priest SD (1993) Discontinuity analysis for rock engineering. Chapman & Hall, LondonCrossRef
    Rocscience Inc. (2006) DIPS V 5.1, Toronto, Ontario
    Slob S, Hack HRGK, Feng Q, Röshoff K, Tunner AK (2007) Fracture mapping using 3D laser scanning techniques. In: 11th congress of the international society for rock mechanics, Lisbon, pp 299–302
    Split Engineering, LCC. (2007) Split-FX V 2.1, Tucson, AZ
    Strouth A, Eberhardt E, Hungr O (2006) The use of lidar to overcome rock slope hazard data collection challenges at Afternoon Creek, Washington. In: 41st U.S. symposium on rock mechanics (USRMS), CO, pp 17–21
    Sturzenegger M, Stead D (2009) Close-range terrestrial digital photogrammetry and terrestrial laser scanning for discontinuity characterization on rock cuts. Eng Geol 106:163–182. doi:10.​1016/​j.​enggeo.​2009.​03.​004 CrossRef
    Sturzenegger M, Stead D, Elmo D (2011) Terrestrial remote sensing-based estimation of mean trace length, trace intensity and block size/shape. Eng Geol 119:96–111. doi:10.​1016/​j.​enggeo.​2011.​02.​005 CrossRef
    Terzaghi RD (1965) Sources of error in joint surveys. Geotechnique 15:287–304. doi:10.​1680/​geot.​1965.​15.​3.​287 CrossRef
    Umili G, Ferrero A, Einstein HH (2013) A new method for automatic discontinuity traces sampling on rock mass 3D model. Comput Geosci 51:182–192. doi:10.​1016/​j.​cageo.​2012.​07.​026 CrossRef
    Wathugala DN, Kulatilake PHSW (1990) A general procedure to correct sampling bias on joint orientation using a vector approach. Comput Geotech 10:1–31. doi:10.​1016/​0266-352X(90)90006-H CrossRef
    Wu Q, Kulatilake PHSW, Tang H (2011) Comparison of rock discontinuity mean trace length and density estimation methods using discontinuity data from an outcrop in Wenchuan area, China. Comput Geotech 38:258–268. doi:10.​1016/​j.​compgeo.​2010.​12.​003 CrossRef
    Zhang L, Einstein HH (1998) Estimating the mean trace length of rock discontinuities. Rock Mech Rock Eng 31(4):217–235. doi:10.​1007/​s006030050022 CrossRef
    Zhang L, Einstein HH (2000) Estimating the intensity of rock discontinuities. Int J Rock Mech Min Sci 37:819–837. doi:10.​1016/​S1365-1609(00)00022-8 CrossRef
  • 作者单位:Pedro Pazzoto Cacciari (1)
    Marcos Massao Futai (1)

    1. Geotechnical Engineering Department, Polytechnical School, University of São Paulo, Av. Prof. Luciano Gualberto, travessa 3 no 380, Cidade Universitária, Butantã, São Paulo, SP, CEP 05508-010, Brazil
  • 刊物类别:Earth and Environmental Science
  • 刊物主题:Earth sciences
    Applied Geosciences
    Structural Foundations and Hydraulic Engineering
    Geoecology and Natural Processes
    Nature Conservation
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1435-9537
文摘
This paper attempts to evaluate various methods of geometrical discontinuity characterization using point clouds that are generated with three-dimensional terrestrial laser scanning (3DTLS) in a tunnel. The use of 3DTLS to support discontinuity mapping in tunnels enables the acquisition of a large amount of data without limitations in terms of the tunnel position (wall or roof). Thus, the discontinuity orientation, trace length and frequency were statistically analyzed in different regions of the tunnel to determine the most representative data. Different methods of estimating the mean trace length were compared while considering the variations in the rock face orientation in the tunnel, and the unbiased standard deviation of the trace length was evaluated. The frequencies of discontinuity sets were obtained using scanlines, and aspects of window sampling for density (areal frequency) estimates in tunnels are discussed. The mean trace lengths obtained using rectangular sampling windows (considering the relative frequency of the traces) are more suitable for estimates of different rock face orientations, particularly when the orientation of the discontinuity set varies significantly. In this case, measurements of samples from the tunnel roof presented higher values for both frequency and mean trace length estimates, which demonstrates the importance of data acquisition and evaluation in this region. Keywords Discontinuity Laser scanner Mean trace length Frequency Tunnel

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700