Magma flow paths and strain patterns in magma chambers growing by floor subsidence: a model based on magnetic fabric study of shallow-level plutons in the ?tiavnica volcano–plutonic complex, Western Carpathians
详细信息    查看全文
  • 作者:Filip Tomek ; Ji?í ?ák ; Martin Chadima
  • 关键词:Anisotropy of magnetic susceptibility (AMS) ; Caldera ; Intrusive strain ; Magma emplacement ; Pluton floor subsidence ; Stratovolcano
  • 刊名:Bulletin of Volcanology
  • 出版年:2014
  • 出版时间:November 2014
  • 年:2014
  • 卷:76
  • 期:11
  • 全文大小:12,123 KB
  • 参考文献:1. Bielik M, ?efara J, Ková? M, Bezák V, Pla?ienka D (2004) The Western Carpathians—interaction of Hercynian and Alpine processes. Tectonophysics 393:63-6. doi:10.1016/j.tecto.2004.07.044 CrossRef
    2. Bonin B, Ethien R, Gerbe MC, Cottin JY, Feraud G, Gagnevin D, Giret A, Michon G, Moine B (2004) The Neogene to recent Rallier-du-Baty nested ring complex, Kerguelen Archipelago (TAAF, Indian Ocean): stratigraphy revisited, implications for cauldron subsidence mechanisms. In: Breitkreuz C, Petford N (eds) Physical geology of high-level magmatic systems. Geol Soc London Spec Pub 234:125-49. doi:10.1144/GSL.SP.2004.234.01.08
    3. Borradaile GJ, Henry B (1997) Tectonic applications of magnetic susceptibility and its anisotropy. Earth Sci Rev 42:49-3. doi:10.1016/S0012-8252(96)00044-X CrossRef
    4. Borradaile GJ, Jackson M (2010) Structural geology, petrofabrics and magnetic fabrics (AMS, AARM, AIRM). J Struct Geol 32:1519-551. doi:10.1016/j.jsg.2009.09.006 CrossRef
    5. Burchardt S, Tanner D, Krumbholz M (2012) The Slaufrudalur pluton, southeast Iceland—an example of shallow magma emplacement by coupled cauldron subsidence and magmatic stoping. Geol Soc Am Bull 124:213-27. doi:10.1130/B30430.1 CrossRef
    6. Callot JP, Guichet X (2003) Rock texture and magnetic lineation in dykes: a simple analytical model. Tectonophysics 366:207-22. doi:10.1016/S0040-1951(03)00096-9 CrossRef
    7. Canales JP, Nedimovic MR, Kent GM, Carbotte SM, Detrick RS (2009) Seismic reflection images of a near-axis melt sill within the lower crust at the Juan de Fuca ridge. Nature 460:89-3. doi:10.1038/nature08095 CrossRef
    8. Chadima M, Jelínek V (2009) Anisoft 4.2: Anisotropy data browser for Windows. Agico, Inc
    9. Clough CT, Maufe HB, Bailey EB (1909) The cauldron subsidence of Glen Coe and the associated igneous phenomena. Q J Geol Soc London 65:611-78. doi:10.1144/GSL.JGS.1909.065.01-04.35 CrossRef
    10. Cobbing EJ, Pitcher WS (1972) The Coastal Batholith of central Peru. J Geol Soc London 128:421-54. doi:10.1144/gsjgs.128.5.0421 CrossRef
    11. Cogné JP, Perroud H (1988) Anisotropy of magnetic susceptibility as a strain gauge in the Flamanville granite, NW France. Phys Earth Planet Int 51:264-70. doi:10.1016/0031-9201(88)90068-4 CrossRef
    12. Corry CE (1988) Laccoliths: mechanics of emplacement and growth. Geol Soc Am Spec Paper 220:1-14. doi:10.1130/SPE220-p1 CrossRef
    13. Cruden AR (1990) Flow and fabric development during the diapiric rise of magma. J Geol 98:681-98
    14. Cruden AR (1998) On the emplacement of tabular granites. J Geol Soc London 155:853-62. doi:10.1144/gsjgs.155.5.0853 CrossRef
    15. Cruden AR, McCaffrey KJW (2001) Growth of plutons by floor subsidence: implications for rates of emplacement, intrusion spacing and melt-extraction mechanisms. Phys Chem Earth 26:303-15. doi:10.1016/S1464-1895(01)00060-6
    16. Cruden AR, Tobisch OT, Launeau P (1999) Magnetic fabric evidence for conduit-fed emplacement of a tabular intrusion: Dinkey Creek Pluton, central Sierra Nevada batholith, California. J Geophys Res 104:10511-0530. doi:10.1029/1998JB900093
    17. Froitzheim N, Pla?ienka D, Schuster R (2008) Alpine tectonics of the Alps and Western Carpathians. In: McCann T (ed) The geology of Central Europe. Volume 2: Mesozoic and Cenozoic. Geological Society, London, pp 1141-232
    18. Furman T, Meyer PS, Frey F (1992) Evolution of Icelandic central volcanoes—evidence from the Austurhorn intrusion, southeastern Iceland. Bull Volcanol 55:45-2. doi:10.1007/BF00301119 CrossRef
    19. Geoffroy L, Callot JP, Aubourg C, Moreira M (2002) Magnetic and plagioclase linear fabric discrepancy in dykes: a new way to define the flow vector using magnetic foliation. Terra Nova 14:183-90. doi:10.1046/j.1365-3121.2002.00412.x CrossRef
    20. Grocott J, Arevalo C, Welkner D, Cruden A (2009) Fault-assisted vertical pluton growth: Coastal Cordillera, north Chilean Andes. J Geol Soc London 166:295-01. doi:10.1144/0016-76492007-165 CrossRef
    21. Gudmundsson A (2011) Deflection of dykes into sills at discontinuities and magma-chamber formation. Tectonophysics 500:50-4. doi:10.1016/j.tecto.2009.10.015 CrossRef
    22. Gudmundsson A (2012) Magma chambers: formation, local stresses, excess pressures, and compartments. J Volcanol Geotherm Res 237-38:19-1. doi:10.1016/j.jvolgeores.2012.05.015 CrossRef
    23. Harangi S, Downes H, Thirlwall M, Gmeling K (2007) Geochemistry, petrogenesis and geodynamic relationships of Miocene calc-alkaline volcanic rocks in the Western Carpathian Arc, Eastern Central Europe. J Petrol 48:2261-287. doi:10.1093/petrology/egm059 CrossRef
    24. He B, Xu YG, Paterson S (2009) Magmatic diapirism of the Fangshan pluton, southwest of Beijing, China. J Struct Geol 31:615-26. doi:10.1016/j.jsg.2009.04.007 CrossRef
    25. Hrouda F (1982) Magnetic anisotropy of rocks and its application in geology and geophysics. Geophys Surv 5:37-2. doi:10.1007/BF01450244 CrossRef
    26. Hrouda F, Kahan ? (1991) The magnetic fabric relationship between sedimentary and basement nappes in the High Tatra Mountains. N Slovakia J Struct Geol 13:431-42. doi:10.1016/0191-8141(91)90016-C CrossRef
    27. Hrouda F, Lanza R (1989) Magnetic fabric in the Biella and Traversella stocks (Periadriatic Line): implications for the mode of emplacement. Phys Earth Planet Inter 56:337-48. doi:10.1016/0031-9201(89)90168-4 CrossRef
    28. Huges RA, Evans JA, Noble SR, Rundle CC (1996) U–Pb chronology of the Ennerdale and Eskdale intrusions supports sub-volcanic relationships with the Borrowdale Volcanic Group (Ordovician, English Lake District). J Geol Soc London 153:33-8. doi:10.1144/gsjgs.153.1.0033 CrossRef
    29. Jelínek V (1981) Characterization of the magnetic fabric of rocks. Tectonophysics 79:T63–T67. doi:10.1016/0040-1951(81)90110-4
    30. Karell F, Ehlers C, Airo ML, Selonen O (2009) Intrusion mechanisms and magnetic fabrics of the Vehmaa rapakivi granite batholith in SW Finland. Geotect Res 96:53-8. doi:10.1127/1864-5658/09/96-0053 CrossRef
    31. Koděra P, Lexa J, Rankin AH, Fallick AE (2004) Fluid evolution in a subvolcanic granodiorite pluton related to Fe and Pb–Zn mineralization, Banská ?tiavnica ore district, Slovakia. Econ Geol 99:1745-770. doi:10.2113/gsecongeo.99.8.1745
    32. Koděra P, Lexa J, Rankin AH, Fallick AE (2005) Epithermal gold veins in a caldera setting: Banská Hodru?a, Slovakia. Miner Deposita 39:921-43. doi:10.1007/s00126-004-0449-5 CrossRef
    33. Kone?ny V (1971) Evolutionary stages of the Banská ?tiavnica caldera and its post-volcanic structures. Bull Volcanol 35:95-16. doi:10.1007/BF02596810 CrossRef
    34. Kone?ny P (2002) Evolution of magmatic reservoir underneath the ?tiavnica stratovolcano. Dissertation, Comenius University, Bratislava
    35. Kone?ny P, Lexa J, Hostri?ová V (1995) The Central Slovakia Neogene volcanic field: a review. Acta Vulcanol 7:63-8
    36. Kone?ny V, Lexa J, Halouzka R, et al (1998a) Explanations to the geological map of the ?tiavnické vrchy and Pohronsky Inovec mountain ranges (?tiavnica stratovolcano), State Geological Institute of Dionyz ?túr, Bratislava
    37. Kone?ny V, Lexa J, Halouzka R, et al (1998b) Geologic map of ?tiavnické vrchy a Pohronsky Inovec mountain ranges 1: 50,000, State Geological Institute of Dionyz ?túr, Bratislava
    38. Kone?ny V, Ková? M, Lexa J, ?efara J (2002) Neogene evolution of the Carpatho–Pannonian region: an interplay of subduction and back-arc diapiric uprise in the mantle. EGU Stephan Mueller Spec Publ Ser 1:105-23 CrossRef
    39. Lexa J, ?tohl J, Kone?ny V (1999) The Banská ?tiavnica ore district: relationship between metallogenetic processes and the geological evolution of a stratovolcano. Miner Deposita 34:639-54. doi:10.1007/s001260050225 CrossRef
    40. Lipman PW (1984) The roots of ash flow calderas in Western North America: windows into the tops of granitic batholiths. J Geophys Res 89:8801-841. doi:10.1029/JB089iB10p08801 CrossRef
    41. Lipman PW (2007) Incremental assembly and prolonged consolidation of Cordilleran magma chambers: evidence from the Southern Rocky Mountain volcanic field. Geosphere 3:42-0. doi:10.1130/GES00061.1 CrossRef
    42. McIntosh WC, Chapin CE (2004) Geochronology of the central Colorado volcanic field. New Mexico Bureau Geol Min Res Bull?16:205-38
    43. McNulty BA, Tobisch OT, Cruden AR, Gilder S (2000) Multistage emplacement of the Mount Givens pluton, central Sierra Nevada batholith, California. Geol Soc Am Bull 112:119-35. doi:10.1130/0016-7606(2000)112 CrossRef
    44. Miller RB, Paterson SR (1999) In defense of magmatic diapirs. J Struct Geol 21:1161-173. doi:10.1016/S0191-8141(99)00033-4 CrossRef
    45. Myers JS (1975) Cauldron subsidence and fluidization: mechanisms of intrusion of the Coastal Batholith of Peru into its own volcanic ejecta. Geol Soc Am Bull 86:1209-220. doi:10.1130/0016-7606(1975)86 CrossRef
    46. Nagaoka Y, Nishida K, Aoki Y, Takeo M, Ohminato T (2012) Seismic imaging of magma chamber beneath an active volcano. Earth Planet Sci Lett 333-34:1-. doi:10.1016/j.epsl.2012.03.034 CrossRef
    47. Nagata T (1962) Rock magnetism. Maruzen, Tokyo
    48. Nelson ST, Davidson JP, Heizler MT, Kowallis BJ (1999) Tertiary tectonic history of the southern Andes: the subvolcanic sequence to the Tatara–San Pedro volcanic complex, lat 36°S. Geol Soc Am Bull 111:1387-404. doi:10.1130/0016-7606(1999)111 CrossRef
    49. Něm?ok M, Kone?ny P, Lexa O (2000) Calculations of tectonic, magmatic and residual stress in the Stiavnica stratovolcano, Western Carpathians: implications for mineral precipitation paths. Geol Carpath 51:19-6
    50. O’Driscoll B, Troll VR, Reavy RJ, Turner P (2006) The Great Eucrite intrusion of Ardnamurchan, Scotland: reevaluating the ring-dike concept. Geology 34:189-92. doi:10.1130/G22294.1 CrossRef
    51. Paterson SR, Farris DW (2008) Downward host rock transport and the formation of rim monoclines during the emplacement of Cordilleran batholiths. Trans Roy Soc Edinb Earth Sci 97:397-13. doi:10.1017/S026359330000153X CrossRef
    52. Paterson S, Vernon R (1995) Bursting the bubble of ballooning plutons: a return to nested diapirs emplaced by multiple processes. Geol Soc Am Bull 107:1356-380. doi:10.1130/0016-7606(1995)107 CrossRef
    53. Paterson SR, Fowler TK, Miller RB (1996) Pluton emplacement in arcs: a crustal-scale exchange process. Geol Soc Am Spec Paper 315:115-23. doi:10.1130/0-8137-2315-9.115
    54. Paterson SR, Fowler TK, Schmidt KL, Yoshinobu AS, Yuan ES, Miller RB (1998) Interpreting magmatic fabric patterns in plutons. Lithos 44:53-2. doi:10.1016/S0024-4937(98)00022-X CrossRef
    55. Pécskay Z, Lexa J, Szakács A, Seghedi I, Balogh K, Kone?ny V,?Zelenka T, Kovacs M, Póka T, Fül?p A, Márton E, Panaiotu C, Cvetkovi? V (2006) Geochronology of Neogene magmatism in the Carpathian arc and intra-Carpathian area. Geol Carpath 57:511-30
    56. Petronis MS, O’Driscoll B (2013) Emplacement of the early Miocene Pinto Peak intrusion, Southwest Utah, USA. Geochemistry, Geophys Geosystems 14:5128-145. doi:10.1002/2013GC004930 CrossRef
    57. Petronis MS, Hacker DB, Holm DK, Geissman JW, Harlan SS (2004) Magmatic flow paths and palaeomagnetism of the Miocene Stoddard Mountain laccolith, Iron Axis region, Southwestern Utah, USA. In: Martín-Hernández F, Lüneburg CM, Aubourg C, Jackson M (eds) Magnetic fabric: methods and application. Geol Soc London Spec Publ 238:251-83. doi:10.1144/GSL.SP.2004.238.01.16
    58. Philpotts AR, Philpotts DE (2007) Upward and downward flow in a camptonite dike as recorded by deformed vesicles and the anisotropy of magnetic susceptibility (AMS). J Volcanol Geotherm Res 161:81-4. doi:10.1016/j.jvolgeores.2006.11.006 CrossRef
    59. Pla?ienka D (2003) Development of basement-involved fold and thrust structures exemplified by the Tatric–Fatric–Veporic nappe system of the Western Carpathians (Slovakia). Geodin Acta 16:21-8. doi:10.1016/S0985-3111(02)00003-7 CrossRef
    60. Ramsay JG (1989) Emplacement kinematics of a granite diapir: the Chindamora batholith, Zimbabwe. J Struct Geol 11:191-09. doi:10.1016/0191-8141(89)90043-6 CrossRef
    61. Roobol MJ (1974) The geology of the Vesturhorn intrusion, SE Iceland. Geol Mag 111:273-86. doi:10.1017/S001675680003867X CrossRef
    62. Seager WR, McCurry M (1988) The cogenetic Organ cauldron and batholith, South Central New Mexico: evolution of a large-volume ash flow cauldron and its source magma chamber. J Geophys Res 93:4421-433. doi:10.1029/JB093iB05p04421 CrossRef
    63. ?tohl J, Hojstri?ová V, Lexa J, Rojkovi?ová L, ?áková E, Gargulák M, Staňa ?, Kantor J, ?urkovi?ová J (1990) Evaluation of the bore hole B-1/2000 m, Horná Roveň. Open file report. State Geological Institute of Dionyz ?túr, Bratislava
    64. Tarling DH, Hrouda F (1993) Magnetic anisotropy of rocks. Chapman and Hall, London
    65. Twiss RJ, Moores EM (1992) Structural geology. Freeman, New York
    66. Vernon RH (2000) Review of microstructural evidence of magmatic and solid-state flow. Electronic Geosci 5:1-3. doi:10.1007/s10069-000-0002-3
    67. Vernon RH, Johnson SE, Melis EA (2004) Emplacement-related microstructures in the margin of a deformed pluton: the San José tonalite, Baja California, México. J Struct Geol 26:1867-884. doi:10.1016/j.jsg.2004.02.007
    68. Wyss M, Shimazaki K, Wiemer S (1997) Mapping active magma chambers by b values beneath the off-Ito volcano, Japan. J Geophys Res 102:20413-0422. doi:10.1029/97JB01074 CrossRef
    69. Yoshinobu AS, Fowler TK, Paterson SR, Llambias E, Tickyj H, Sato AM (2003) A view from the roof: magmatic stoping in the shallow crust, Chita pluton, Argentina. J Struct Geol 25:1037-048. doi:10.1016/S0191-8141(02)00149-9 CrossRef
  • 作者单位:Filip Tomek (1) (2)
    Ji?í ?ák (1)
    Martin Chadima (2) (3)

    1. Institute of Geology and Paleontology, Faculty of Science, Charles University, Albertov 6, Prague, 12843, Czech Republic
    2. Institute of Geology, Academy of Sciences of the Czech Republic, v.v.i., Rozvojová 269, Prague, 16500, Czech Republic
    3. AGICO Inc, Je?ná 29, Brno, 62100, Czech Republic
  • ISSN:1432-0819
文摘
The Miocene ?tiavnica volcano–plutonic complex, Western Carpathians, exposes two nearly coeval intra-caldera plutons, their roof (basement of a stratovolcano), and associated volcanic rocks. The complex thus provides insights into mechanisms of magma chamber growth beneath large volcanoes. As inferred from the anisotropy of magnetic susceptibility (AMS), these plutons were emplaced through significantly different processes: the diorite as a discordant stock with steep fabric and the granodiorite as a tabular, bell-jar pluton. In detail, we interpret that the latter was assembled in two stages. First, an upper “layer-intruded as a thin sill along a major subhorizontal basement/cover detachment. The subhorizontal magnetic fabric and strongly oblate AMS ellipsoid in this layer record intrusive strain where the magma flow paths were subparallel to the pluton roof. Second, in the lower “layer-of the pluton, magnetic foliations dip moderately to the ~NW and ~WNW to vertical and are associated with down-dip to subhorizontal lineations and prolate to weakly oblate shapes of the AMS ellipsoids. Such a?fabric pattern is compatible with piecemeal floor subsidence, where magma flowed along multiple subsiding fault-bounded blocks. Based on this case example, we develop a conceptual model for magma flow paths and strain patterns for four main modes of floor subsidence: (1) piston (cauldron) subsidence is characterized by convergent flow and radial principal stretching above the magma chamber floor; (2) the piecemeal floor subsidence leads to steep to inclined magma flow paths in conduits along fault-bounded blocks; (3) asymmetric (trapdoor) subsidence produces first divergent flow paths near the conduit sides, changing into convergent paths in the narrower space near the kinematic hinge; and (4) symmetric cantilever (funnel) subsidence will lead to divergent flow from a central feeder and thus circumferential principal stretching of the magma. If the growing pluton develops a “two-layer-structure, all the flow paths and associated strains are affected by the flat-lying pluton roof and will convert into horizontal flattening as the roof is approached.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700