Dispersal and control of anammox granular sludge at high substrate concentrations
详细信息    查看全文
  • 作者:Ting-Ting Chen (1)
    Ping Zheng (1) pzheng@zju.edu.cn
    Li-Dong Shen (1)
    Chong-Jian Tang (1)
    Shuang Ding (1)
  • 关键词:anammox &#8211 ; sludge dispersal &#8211 ; control strategy
  • 刊名:Biotechnology and Bioprocess Engineering
  • 出版年:2012
  • 出版时间:October 2012
  • 年:2012
  • 卷:17
  • 期:5
  • 页码:1093-1102
  • 全文大小:477.4 KB
  • 参考文献:1. Jetten, M. S. M., M. Strous, K. T. van de Pas-Schoonen, J. Schalk, U. G. J. M. van Dongen, A. A. van de Graaf, S. Logemann, G. Muyzer, M. C. M. van Loosdrecht, and J. G. Kuenen (1998) The anaerobic oxidation of ammonium. Fems. Microbiol. Rev. 22: 421–437.
    2. Tang, C. J., P. Zheng, C. H. Wang, Q. Mahmood, J. Q. Zhang, X. G. Chen, L. Zhang, and J. W. Chen (2011) Performance of highloaded ANAMMOX UASB reactors containing granular sludge. Water Res. 45: 135–144.
    3. Jetten, M. S. M., M. Wagner, J. Fuerst, M. van Loosdrecht, G. Kuenen, and M. Strous (2001) Microbiology and application of the anaerobic ammonium oxidation (’anammox’) process. Curr. Opin. Biotech. 12: 283–288.
    4. van der Star, W. R. L., W. R. Abma, D. Blommers, J. W. Mulder, T. Tokutomi, M. Strous, C. Picioreanu, and M. C. M. Van Loosdrecht (2007) Startup of reactors for anoxic ammonium oxidation: Experiences from the first full-scale anammox reactor in Rotterdam. Water Res. 41: 4149–4163.
    5. Tokutomi, T., H. Yamauchi, S. Nishimura, M. Yoda, and W. Abma (2011) Application of the nitritation and anammox process into inorganic nitrogenous wastewater from semiconductor factory. J. Environ. Eng-Asce. 137: 146–154.
    6. Joss, A., D. Salzgeber, J. Eugster, R. Konig, K. Rottermann, S. Burger, P. Fabijan, S. Leumann, J. Mohn, and H. Siegrist (2009) Full-Scale nitrogen removal from digester liquid with partial nitritation and anammox in One SBR. Environ. Sci. Technol. 43: 5301–5306.
    7. Strous, M., J. G. Kuenen, and M. S. M. Jetten (1999) Key physiology of anaerobic ammonium oxidation. Appl. Environ. Microb. 65: 3248–3250.
    8. Tsushima, I., T. Kindaichi, and S. Okabe (2007) Quantification of anaerobic ammonium-oxidizing bacteria in enrichment cultures by real-time PCR. Water Res. 41: 785–794.
    9. Strous, M., J. A. Fuerst, E. H. M. Kramer, S. Logemann, G. Muyzer, K. T. van de Pas-Schoonen, R. Webb, J. G. Kuenen, and M. S. M. Jetten (1999) Missing lithotroph identified as new planctomycete. Nature 400: 446–449.
    10. Ni, B. J., B. L. Hu, F. Fang, W. M. Xie, B. Kartal, X. W. Liu, G. P. Sheng, M. Jetten, P. Zheng, and H. Q. Yu (2010) Microbial and physicochemical characteristics of compact anaerobic ammonium-oxidizing granules in an upflow anaerobic sludge blanket reactor. Appl. Environ. Microbiol. 76: 2652–2656.
    11. Fernandez, I., J. R. Vazquez-Padin, A. Mosquera-Corral, J. L. Campos, and R. Mendez (2008) Biofilm and granular systems to improve Anammox biomass retention. Biochem. Eng. J. 42: 308–313.
    12. Li, X., Y. Xiao, D. Liao, W. Zheng, T. Yi, Q. Yang, and G. Zeng (2011) Granulation of simultaneous partial nitrification and anammox biomass in one single SBR system. Appl. Biochem. Biotechnol. 163: 1053–1065.
    13. Tang, C. J., P. Zheng, C. H. Wang, and Q. Mahmood (2010) Suppression of anaerobic ammonium oxidizers under high organic content in high-rate Anammox UASB reactor. Bioresour. Technol. 101: 1762–1768.
    14. Arrojo, B., A. Mosquera-Corral, J. L. Campos, and R. Mendez (2006) Effects of mechanical stress on Anammox granules in a sequencing batch reactor (SBR). J Biotechnol. 123: 453–463.
    15. Arrojo, B., M. Figueroa, A. Mosquera-Corral, J. L. Campos, and R. Mendez (2008) Influence of gas flow-induced shear stress on the operation of the Anammox process in a SBR. Chemosphere 72: 1687–1693.
    16. van der Star, W. R., W. R. Abma, D. Blommers, J. W. Mulder, T. Tokutomi, M. Strous, C. Picioreanu, and M. C. van Loosdrecht (2007) Startup of reactors for anoxic ammonium oxidation: Experiences from the first full-scale anammox reactor in Rotterdam. Water Res. 41: 4149–4163.
    17. van der Star, W. R. L., A. I. Miclea, U. G. J. M. van Dongen, G. Muyzer, C. Picioreanu, and M. C. M. van Loosdrecht (2008) The membrane bioreactor: A novel tool to grow anammox bacteria as free cells. Biotechnol. Bioeng. 101: 286–294.
    18. van de Graaf, A. A., P. de Bruijn, L. A. Robertson, M. S. M. Jetten, and J. G. Kuenen (1996) Autotrophic growth of anaerobic ammonium-oxidizing micro-organisms in a fluidized bed reactor. Microbiol. 142: 2187–2196.
    19. APHA (2005) Standard methods for the examination of water and wastewater. American public health association, Washington D.C.
    20. Wang, C. H. (2010) Preservation methods of quality bacteria for nitrogen removal. MS Thesis. Zhejiang university, Hangzhou, China.
    21. Wu, J., H. M. Zhou, H. Z. Li, P. C. Zhang, and J. Jiang (2009) Impacts of hydrodynamic shear force on nucleation of flocculent sludge in anaerobic reactor. Water Res. 43: 3029–3036.
    22. Berry, E. A. and B. L. Trumpower (1987) Simultaneous determination of Hemes-a, Hemes-B, and Hemes-C from pyridine hemochrome spectra. Anal. Biochem. 161: 1–15.
    23. Sinclair, P. R., N. Gorman, and J. M. Jacobs (2001) Measurement of heme concentration. Curr. Protoc. Toxicol. 8: 8.3.
    24. Schmid, M., K. Walsh, R. Webb, W. I. C. Rijpstra, K. van de Pas-Schoonen, M. J. Verbruggen, T. Hill, B. Moffett, J. Fuerst, S. Schouten, J. S. S. Damste, J. Harris, P. Shaw, M. Jetten, and M. Strous (2003) Candidatus “Scalindua brodae”, sp nov., Candidatus “Scalindua wagneri”, sp nov., two new species of anaerobic ammonium oxidizing bacteria. Syst. Appl. Microbiol. 26: 529–538.
    25. Schmid, M., U. Twachtmann, M. Klein, M. Strous, S. Juretschko, M. Jetten, J. W. Metzger, K. H. Schleifer, and M. Wagner (2000) Molecular evidence for genus level diversity of bacteria capable of catalyzing anaerobic ammonium oxidation. Syst. Appl. Microbiol. 23: 93–106.
    26. Schmidt, J. E. and B. K. Ahring (1996) Granular sludge formation in upflow anaerobic sledge blanket (UASB) reactors. Biotechnol. Bioeng. 49: 229–246.
    27. Isaka, K., T. Sumino, and S. Tsuneda (2007) High nitrogen removal performance at moderately low temperature utilizing anaerobic ammonium oxidation reactions. J. Biosci. Bioeng. 103: 486–490.
    28. Dapena-Mora, A., I. Fernandez, J. L. Campos, A. Mosquera-Corral, R. Mendez, and M. S. M. Jetten (2007) Evaluation of activity and inhibition effects on Anammox process by batch tests based on the nitrogen gas production. Enz. Microb. Tech. 40: 859–865.
    29. Lotti, T., W. R. van der Star, R. Kleerebezem, C. Lubello, and M. C. van Loosdrecht (2012) The effect of nitrite inhibition on the anammox process. Water Res. 46: 2559–2569.
    30. Fernandez, I., J. Dosta, C. Fajardo, J. L. Campos, A. Mosquera-Corral, and R. Mendez (2012) Short- and long-term effects of ammonium and nitrite on the Anammox process. J. Environ. Manage. 95: 170–174.
    31. Anthonisen, A. C., R. C. Loehr, T. B. Prakasam, and E. G. Srinath (1976) Inhibition of nitrification by ammonia and nitrous acid. J. Water Pollut. Control Fed. 48: 835–852.
    32. Abma, W. R., C. E. Schultz, J. W. Mulder, W. R. L. van der Star, M. Strous, T. Tokutomi, and M. C. M. van Loosdrecht (2007) Full-scale granular sludge Anammox process. Water Sci. Technol. 55: 27–33.
    33. Lotti, T., W. R. van der Star, R. Kleerebezem, C. Lubello, and M. C. van Loosdrecht (2012) The effect of nitrite inhibition on the anammox process. Water Res. 46: 2559–2569.
    34. Cirpus, I. E., W. Geerts, J. H. Hermans, H. J. Op den Camp, M. Strous, J. G. Kuenen, and M. S. Jetten (2006) Challenging protein purification from anammox bacteria. Int. J. Biol. Macromol. 39: 88–94.
    35. Shimamura, M., T. Nishiyama, K. Shinya, Y. Kawahara, K. Furukawa, and T. Fujii (2008) Another multiheme protein, hydroxylamine oxidoreductase, abundantly produced in an anammox bacterium besides the hydrazine-oxidizing enzyme. J. Biosci. Bioeng. 105: 432–432.
    36. Chen, Y. K., D. Y. Huang, and Y. F. Qiang (2003) Study on quick determination of cytochrome c. J. Shanxi Univ. 26: 64–66.
    37. Laspidou, C. S. and B. E. Rittmann (2002) A unified theory for extracellular polymeric substances, soluble microbial products, and active and inert biomass. Water Res. 36: 2711–2720.
    38. Almeida, J. S., S. M. Julio, M. A. M. Reis, and M. J. T. Carrondo (1995) Nitrite inhibition of denitrification by pseudomonas-fluorescens. Biotechnol. Bioeng. 46: 194–201.
    39. Morgan, J. W., C. F. Forster, and L. Evison (1990) A comparative-study of the nature of biopolymers extracted from anaerobic and activated sludges. Water Res. 24: 743–750.
    40. Grotenhuis, J. T. C., M. Smit, A. A. M. Vanlammeren, A. J. M. Stams, and A. J. B. Zehnder (1991) Localization and quantification of extracellular polymers in methanogenic granular sludge. Appl. Microbiol. Biot. 36: 115–119.
    41. Schmidt, J. E. and B. K. Ahring (1994) Extracellular polymers in granular sludge from different upflow anaerobic sludge blanket (Uasb) reactors. Appl. Microbiol. Biot. 42: 457–462.
    42. Shen, C. F., N. Kosaric, and R. Blaszczyk (1993) The effect of selected Heavy-Metals (Ni, Co and Fe) on anaerobic granules and their extracellular polymeric substance (Eps). Water Res. 27: 25–33.
  • 作者单位:1. Department of Environmental Engineering, Zhejiang University, Hangzhou, 310-029 China
  • ISSN:1976-3816
文摘
This paper reports about the dispersal and control of anammox granular sludge at high substrate concentrations. The results demonstrate that anammox granular sludge would turn into flocculent sludge when the substrate concentrations exceed the inhibitory threshold concentrations, with an apparent drop in the settling velocity of anammox sludge from 73.73 to 16.49 m/h. Moreover, the sludge was washed out of the reactor and a decrease in the nitrogen removal rate from 23.82 to 16.97 kg N/(m3/day) was observed. The dominant anammox bacteria in the granular and flocculent sludge were Candidatus Kuenenia stuttgartiensis; however, the contents of heme c and extracellular polymeric substances in the flocculent sludge were much lower than in the granular sludge. Furthermore, the chemical composition of extracellular polymeric substances was different. The high nitrite concentrations more than the inhibitory threshold concentrations were regarded as the reason for the observed granular sludge dispersal and deterioration in reactor performance. The apparent dispersed granular sludge and malfunction of reactor performance could be recovered by means of washing out the residual substrate from the reactor and then re-running the reactor from low substrate concentrations.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700