Lorentz invariance violation and generalized uncertainty principle
详细信息    查看全文
  • 作者:Abdel Nasser Tawfik ; H. Magdy ; A. Farag Ali
  • 刊名:Physics of Particles and Nuclei Letters
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:13
  • 期:1
  • 页码:59-68
  • 全文大小:418 KB
  • 参考文献:1.L. J. Garay, “Quantum gravity and minimum length,” Int. J. Mod. Phys. A 10, 145–166 (1995); arXiv:gr-qc/9403008.CrossRef ADS
    2.C. Kiefer, Compend. Quantum Phys., 565–572 (2009).CrossRef
    3.C. J. Isham, Lect. Notes Phys. 434, 1–21 (1994).MathSciNet CrossRef ADS
    4.M. Maggiore, “Quantum groups, gravity and the generalized uncertainty principle,” Phys. Rev. D 49, 5182 (1994)MathSciNet CrossRef ADS
    4a.A. Kempf, Report on Symposium at the 21st International Colloquium on Group Theoretical Methods in Physics ICGTMP’96, Goslar, Germany, 1996
    4b.C. Bambi, “A revision of the generalized uncertainty principle,” Class. Quant. Grav. 25, 105003 (2008)MathSciNet CrossRef ADS
    4c.R. J. Adler, “Six easy roads to the Planck scale,” Am. J. Phys. 78, 925 (2010)CrossRef ADS
    4d.K. Nozari, P. Pedram, and M. Molkara, “Minimal length, maximal momentum and the entropic force law,” Int. J. Theor. Phys. 51, 1268 (2012).CrossRef MATH
    5.D. Amati, M. Ciafaloni, and G. Veneziano, “Classical and quantum gravity effects from planckian energy superstring collisions,” Int. J. Mod. Phys. A 3, 1615 (1988); “Superstring collisions at planckian energies,” Phys. Lett. B 197, 81 (1987); “Higher order gravitational deflection and soft bremsstrahlung in planckian energy superstring collisions,” Nucl. Phys. B 347, 550 (1990).CrossRef ADS
    6.A. Farag Ali, S. Das, and E. C. Vagenas, “Discreteness of space from the generalized uncertainty principle,” Phys. Lett. B 678, 497–499 (2009)MathSciNet CrossRef ADS
    6a.S. Das, E. C. Vagenas, and A. Farag Ali, “Discreteness of space from GUP II: relativistic wave equations,” Phys. Lett. B 690, 407–412 (2010); Phys. Lett. B 692, 342(E) (2010).CrossRef ADS
    7.A. Farag Ali, S. Das, and E. C. Vagenas, “A proposal for testing quantum gravity in the lab,” Phys. Rev. D: Part. Fields 84, 044013 (2011).CrossRef ADS
    8.H. Sato and T. Tati, “Hot Universe, cosmic rays of ultrahigh energy and absolute reference system,” Prog. Theor. Phys. 47, 1788 (1972).CrossRef ADS
    9.S. Coleman and S. L. Glashow, “High-energy tests of Lorentz invariance,” Phys. Rev. D: Part. Fields 59, 116008 (1999).CrossRef ADS
    10.F. W. Stecker and S. L. Glashow, “New tests of Lorentz invariance following from observations of the highest energy cosmic gamma-rays,” Astropart. Phys. 16, 97–99 (2001).CrossRef ADS
    11.E. J. Ellis, N. E. Mavromatos, D. V. Nanopoulos, and A. S. Sakharov, “Quantum-gravity analysis of gammaray bursts using wavelets,” Astron. Astrophys. 402, 409 (2003)CrossRef MATH ADS
    11a.S. E. Boggs, C. B. Wunderer, K. Hurley, and W. Coburn, “Testing Lorentz non-invariance with GRB021206,” Astrophys. J. 611, L77–L80 (2004).CrossRef ADS
    12.S. Liberati and L. Maccione, “Lorentz violation: motivation and new constraints,” Ann. Rev. Nucl. Part. Sci. 59, 245–267 (2009); arXiv:0906.0681 [astro-ph.HE].CrossRef ADS
    13.I. Pikovski, M. R. Vanner, M. Aspelmeyer, M. S. Kim, and C. Brukner, “Probing planck-scale physics with quantum optics,” Nature Phys. 8, 393–397 (2012).CrossRef ADS
    14.S. Hossenfelder, “Minimal length scale scenarios for quantum gravity,” Living Rev. Rel. 16, 2 (2013); arXiv:1203.6191 [gr-qc].
    15.A. Tawfik and A. Diab, “Generalized uncertainty principle: approaches and applications,” Int. J. Mod. Phys. D 23, 1430025 (2014); arXiv:1410.0206 [gr-qc].MathSciNet CrossRef ADS
    16.S. Das and E. C. Vagenas, “Universality of quantum gravity corrections,” Phys. Rev. Lett. 101, 221301 (2008); arXiv:0810.5333[hep-th].CrossRef ADS
    17.A. F. Ali, S. Das, and E. C. Vagenas, “The generalized uncertainty principle and quantum gravity phenomenology,” arXiv:1001.2642 [hep-th].
    18.S. Das and E. C. Vagenas, “Phenomenological implications of the generalized uncertainty principle,” Can. J. Phys. 87, 233 (2009); arXiv:0901.1768 [hep-th].CrossRef ADS
    19.I. Elmashad, A. F. Ali, L. I. Abou-Salem, J.-U. Nabi, and A. Tawfik, “Quantum gravity effect on the quarkgluon plasma,” SOP Trans. Theor. Phys. 1, 1–6 (2014); arXiv:1208.4028 [hep-ph].
    20.W. Chemissany, S. Das, A. F. Ali, and E. C. Vagenas, “Effect of the generalized uncertainty principle on post-inflation preheating,” J. Cosmos. Astrophys. Part. 1112, 017 (2011); arXiv:1111.7288 [hep-th].CrossRef ADS
    21.A. Tawfik, H. Magdy, and A. F. Ali, “Effects of quantum gravity on the inflationary parameters and thermodynamics of the early Universe,” Gen. Rel. Grav. 45, 1227–1246 (2013); arXiv:1208/5655 [gr-qc].MathSciNet CrossRef MATH ADS
    22.A. F. Ali, “No existence of black holes at LHC due to minimal length in quantum gravity,” J. High Energy Phys. 1209, 067 (2012); arXiv:1208/6584 [hep-th].CrossRef ADS
    23.A. Tawfik, “Impacts of generalized uncertainty principle on black hole thermodynamics and SaleckerWigner inequalities,” J. Cosmos. Astrophys. Part. 1307, 040 (2013); arXiv:1307.1894 [gr-qc].CrossRef ADS
    24.A. Farag Ali and A. N. Tawfik, “Impacts of generalized uncertainty principle on black hole thermodynamics and Salecker-Wigner inequalities,” Int. J. Mod. Phys. D 22, 1350020 (2013); arXiv:1301.6133 [gr-qc].
    25.A. Farag Ali and A. Tawfik, “Modified Newton’s law of gravitation due to minimal length in quantum gravity,” Adv. High Energy Phys. 2013, 126528 (2013); arXiv:1301.3508 [gr-qc].MathSciNet
    26.G. Amelino-Camelia, J. Ellis, N. E. Mavromatos, D. V. Nanopoulos, and S. Sarkar, “Tests of quantum gravity from observations of gamma-ray bursts,” Nature 393, 763–765 (1998).CrossRef ADS
    27.A. Tawfik, T. Harko, H. Mansour, and M. Wahba, “Dissipative processes in the early Universe: bulk viscosity,” Uzb. J. Phys. 12, 316–321 (2010).
    28.A. Tawfik, in Proceeding of the 12th Marcel Grossmann Meeting on General Relativity, Paris, France, 2009.
    29.A. Tawfik, M. Wahba, H. Mansour, and T. Harko, “Viscous quark-gluon plasma in the early Universe,” Ann. Phys. (N.Y.) 523, 194–207 (2011).CrossRef ADS
    30.A. Tawfik, “Thermodynamics in the viscous early Universe,” Can. J. Phys. 88, 825–831 (2010).CrossRef ADS
    31.A. Tawfik, M. Wahba, H. Mansour, and T. Harko, “Hubble parameter in QCD Universe for finite bulk viscosity,” Ann. Phys. 522, 912–923 (2010).CrossRef
    32.A. Tawfik, “The Hubble parameter in the early Universe with viscous QCD Matter and finite cosmological constant,” Ann. Phys. 523, 423–434 (2011).CrossRef
    33.A. Tawfik and T. Harko, “Quark-hadron phase transitions in viscous early Universe,” Phys. Rev. D: Part. Fields 85, 084032 (2012).CrossRef ADS
    34.A. Tawfik and H. Magdy, “Thermodynamics of viscous matter and radiation in the early Universe,” Can. J. Phys. 90, 433–440 (2012).CrossRef ADS
    35.L. Samushia and B. Ratra, “Cosmological constraints from Hubble parameter versus redshift data,” Astrophys. J. 650, L5–L8 (2006).CrossRef ADS
    36.M. Moresco, A. Cimatti, R. Jimenez, L. Pozzetti, G. Zamorani, M. Bolzonella, J. Dunlop, F. Lamareille, M. Mignoli, H. Pearce, et al., “Improved constraints on the expansion rate of the Universe up to z 1.1 from the spectroscopic evolution of cosmic chronometers,” J. Cosmol. Astropart. Phys. 1208, 006 (2012).CrossRef ADS
    37.M. Moresco, L. Verde, L. Pozzetti, R. Jimenez, and A. Cimatti, “New constraints on cosmological parameters and neutrino properties using the expansion rate of the Universe to z 1.75,” J. Cosmol. Astropart. Phys. 1207, 053 (2012).CrossRef ADS
    38.R. Jimenez and A. Loeb, “Constraining cosmological parameters based on relative galaxy ages,” Astrophys. J. 573, 37 (2002).CrossRef ADS
    39.G. Bruzual and S. Charlot, “Stellar population synthesis at the resolution of 2003,” Mon. Not. R. Astron. Soc. 344, 1000 (2003).CrossRef ADS
    40.C. Maraston and G. Stromback, “Stellar population models at high spectral resolution,” Mon. Not. R. Astron. Soc. 418, 2785 (2011); arXiv:1109/0543 [astroph.CO].CrossRef ADS
    41.T. Adam et al., “Measurement of the neutrino velocity with the OPERA detector in the CNGS beam,” J. High Energy Phys. 1210, 093 (2012).CrossRef ADS
    42.T. Adam et al. (Opera Collab.), “Measurement of the neutrino velocity with the OPERA detector in the CNGS beam using the 2012 dedicated data,” J. High Energy Phys. 1301, 153 (2013).CrossRef ADS
    43.P. Adamson et al. (MINOS Collab.), “Measurement of neutrino velocity with the MINOS detectors and NuMI neutrino beam,” Phys. Rev. D: Part. Fields 76, 072005 (2007).CrossRef ADS
    44.K. Hirata et al. (KAMIOKANDE-II Collab.), “Observation of a neutrino burst from the supernova SN 1987a,” Phys. Rev. Lett. 58, 1490–1493 (1987)CrossRef ADS
    44a.R. Bionta, G. Blewitt, C. Bratton, D. Casper, A. Ciocio, et al., “Observation of a neutrino burst in coincidence with supernova SN 1987a in the Large Magellanic Cloud,” Phys. Rev. Lett. 58, 1494 (1987)CrossRef ADS
    44b.M. J. Longo, “Tests of relativity from SN1987a,” Phys. Rev. D: Part. Fields 36, 3276 (1987).CrossRef ADS
    45.G. Barenboim, O. M. Requejo, and Ch. Quigg, “Diagnostic potential of cosmic-neutrino absorption spectroscopy,” Phys. Rev. D: Part. Fields 71, 083002 (2005).CrossRef ADS
    46.A. Kusenko and M. Postma, “Neutrinos produced by ultrahigh-energy photons at high red shift,” Phys. Rev. Lett. 86, 1430–1433 (2001).CrossRef ADS
    47.D. Majumdar, “Probing pseudo-Dirac neutrino through detection of neutrino induced muons from GRB neutrinos,” Pramana 70, 51–60 (2008).CrossRef ADS
    48.J. Nishimura, M. Fujii, T. Taira, E. Aizu, H. Hiraiwa, T. Kobayashi, K. Niu, I. Ohta, R. L. Golden, T. A. Koss, J. J. Lord, and R. J. Wilkes, “Emulsion chamber observations of primary cosmic ray electrons in the energy range 30 GeV–1000 GeV,” Astrophys. J. 238, 394 (1980).CrossRef ADS
    49.T. Tanimori et al. (CANGAROO Collab.), “Detection of gamma-rays up to 50 TeV from the Crab Nebula,” Astrophys. J. 492, L33 (1998).CrossRef ADS
    50.K. Hurley, B. L. Dingus, R. Mukherjee, P. Sreekumar, C. Kouveliotou, C. Meegan, G. J. Fishman, D. Band, L. Ford, D. Bertsch, T. Cline, C. Fichtel, R. Hartman, S. Hunter, D. J. Thompson, et al., “Detection of a gamma-ray burst of very long duration and very high energy,” Nature 372, 652–654 (1994).CrossRef ADS
    51.G. Amelino-Camelia, J. Ellis, N. E. Mavromatos, and D. V. Nanopoulos, “Distance measurement and wave dispersion in a Liouville string approach to quantum gravity,” Int. J. Mod. Phys. A 12, 607–623 (1997).MathSciNet CrossRef MATH ADS
    52.A. Tawfik, “Orders of Fermiand plasma-accelerations of cosmic rays,” SOP Trans. Theor. Phys. 1, 7–9 (2014); arXiv:1010/5390 [astro-ph.HE].CrossRef
  • 作者单位:Abdel Nasser Tawfik (1) (2)
    H. Magdy (1)
    A. Farag Ali (3)

    1. Egyptian Center for Theoretical Physics (ECTP), Modern University for Technology and Information (MTI), 11571, Cairo, Egypt
    2. World Laboratory for Cosmology and Particle Physics (WLCAPP), 11571, Cairo, Egypt
    3. Physics Department, Faculty of Science, Benha University, Benha, 13518, Egypt
  • 刊物类别:Physics and Astronomy
  • 刊物主题:Physics
    Elementary Particles and Nuclei
    Russian Library of Science
  • 出版者:MAIK Nauka/Interperiodica distributed exclusively by Springer Science+Business Media LLC.
  • ISSN:1531-8567
文摘
There are several theoretical indications that the quantum gravity approaches may have predictions for a minimal measurable length, and a maximal observable momentum and throughout a generalization for Heisenberg uncertainty principle. The generalized uncertainty principle (GUP) is based on a momentum-dependent modification in the standard dispersion relation which is conjectured to violate the principle of Lorentz invariance. From the resulting Hamiltonian, the velocity and time of flight of relativistic distant particles at Planck energy can be derived. A first comparison is made with recent observations for Hubble parameter in redshift-dependence in early-type galaxies. We find that LIV has two types of contributions to the time of flight delay Δt comparable with that observations. Although the wrong OPERA measurement on faster-than-light muon neutrino anomaly, Δt, and the relative change in the speed of muon neutrino Δv in dependence on redshift z turn to be wrong, we utilize its main features to estimate Δv. Accordingly, the results could not be interpreted as LIV. A third comparison is made with the ultra high-energy cosmic rays (UHECR). It is found that an essential ingredient of the approach combining string theory, loop quantum gravity, black hole physics and doubly spacial relativity and the one assuming a perturbative departure from exact Lorentz invariance. Fixing the sensitivity factor and its energy dependence are essential inputs for a reliable confronting of our calculations to UHECR. The sensitivity factor is related to the special time of flight delay and the time structure of the signal. Furthermore, the upper and lower bounds to the parameter, a that characterizes the generalized uncertainly principle, have to be fixed in related physical systems such as the gamma rays bursts. The article is published in the original.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700