A variational approach for a nonlinear one-dimensional damage-elasto-plastic second-gradient continuum model
详细信息    查看全文
  • 作者:Luca Placidi
  • 关键词:Damage ; Plasticity ; Variation ; Microstructure ; Strain ; Gradient
  • 刊名:Continuum Mechanics and Thermodynamics
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:28
  • 期:1-2
  • 页码:119-137
  • 全文大小:1,088 KB
  • 参考文献:1.Alibert J.-J., Seppecher P., dell’Isola F.: Truss modular beams with deformation energy depending on higher displacement gradients. Math. Mech. Solids 8(1), 51–73 (2003)MathSciNet CrossRef
    2.Altenbach H., Eremeyev V.A., Lebedev L.P., Rendon L.A.: Acceleration waves and ellipticity in thermoelastic micropolar media. Arch. Appl. Mech. 80(3), 217–227 (2010)CrossRef
    3.Amor H., Marigo J.-J., Maurini C.: Reguralized formulation of the variational brittle fracture with unilateral contact: Numerical experiment. J. Mech. Phys. Solids 57, 1209–1229 (2009)CrossRef
    4.Andreaus U., Baragatti P.: Cracked beam identification by numerically analysing the nonlinear behaviour of the harmonically forced response. J. Sound Vib. 330(4), 721–742 (2011)CrossRef
    5.Andreaus U., Baragatti P.: Fatigue crack growth, free vibrations and breathing crack detection of aluminium alloy and steel beams. J. Strain Anal. Eng. Des. 44(7), 595–608 (2009)CrossRef
    6.Andreaus U., Baragatti P.: Experimental damage detection of cracked beams by using nonlinear characteristics of forced response. Mech. Syst. Signal Process. 31, 382–404 (2012)CrossRef
    7.Andreaus U., Colloca M., Iacoviello D.: An optimal control procedure for bone adaptation under mechanical stimulus. Control Eng. Pract. 20(6), 575–583 (2012)CrossRef
    8.Andreaus U., Colloca M., Iacoviello D., Pignataro M.: Optimal-tuning PID control of adaptive materals for structural efficiency. Struct. Multidiscip. Optim. 43(1), 43–59 (2011)CrossRef
    9.Andreaus, U., Giorgio, I., Lekszycki, T.: A 2-D continuum model of a mixture of bone tissue and bioresorbable material for simulating mass density redistribution under load slowly variable in time. Zeitschrift fur Angewandte Mathematik und Mechanik (ZAMM) 1–23 (in press). doi:10.​1002/​zamm.​201200182 (2014)
    10.Auffray N., Bouchet R.: Brechet, Derivation of anisotropic matrix for bi-dimensional strain-gradient elasticity behaviour. Int. J. Solids Struct. 46(2), 440–454 (2009)CrossRef
    11.Auffray N., Bouchet R., Brechet Y.: Strain gradient elastic homogenization of bidimensional cellular media. Int. J. Solids Struct. 47(13), 1698–1710 (2010)CrossRef
    12.Bersani A.M, Giorgio I., Tomassetti G.: Buckling of an elastic hemispherical shell with an obstacle. Contin. Mech. Thermodyn. 25(2–4), 443–467 (2013)MathSciNet CrossRef
    13.Bourdin B., Francfort G.A., Marigo J.-J.: The variational approach to fracture. J. Elast. 91, 5–148 (2008)MathSciNet CrossRef
    14.Bui Q.V.: Initiation of damage with implicit gradient-enhanced damage models. Int. J. Solids Struct. 47, 2425–2435 (2010)CrossRef
    15.Buliga M.: Energy minimizing brittle crack propagation. J. Elast. 52, 201–238 (1999)MathSciNet CrossRef
    16.Carcaterra A., Ciappi E.: Prediction of the compressible stage slamming force on rigid and elastic system impacting over the water surface. Nonlinear Dyn. 21(2), 193–220 (2000)CrossRef
    17.Carcaterra A., Ciappi E., Iafrati A., Campana E.F.: Shock spectral analysis of elastic systems impacting on the water surface. J. Sound Vib. 229(3), 579–605 (2000)CrossRef
    18.Chaboche J.L.: Continuum damage mechanics: part I—general concepts. J. Appl. Mech. Trans. ASME 55(1), 59–64 (1988)CrossRef
    19.Comi C.: A non-local model with tension and compression damage mechanics. Eur. J. Mech. A/Solids 20, 1–22 (2001)CrossRef
    20.Contrafatto L., Cuomo M.: A globally convergent numerical algorithm for damaging elasto-plasticity based on the multiplier method. Int. J. Numer. Methods Eng. 63(8), 1089–1125 (2005)MathSciNet CrossRef
    21.Contrafatto, L., Cuomo, M.: A numerical algorithm for the prediction of growth and propagation of interfaces. In: Comput. Plast. Fundam. Appl., 10th International Conference on Computational Plasticity, COMPLAS X, Barcelona, 2–4 Sept 2009, (2009)
    22.Contrafatto L., Cuomo M., Fazio F.: An enriched finite element for crack opening and rebar slip in reinforced concrete members. Int. J. Fract. 178(1–2), 33–50 (2012)CrossRef
    23.Contro R., Poggi C., Cazzani A.: Numerical analysis of fire effects on beam structures. Eng. Comput. (Swansea, Walles) 5(1), 53–58 (1988)CrossRef
    24.Cuomo, M., Nicolosi, A.: A poroplastic model for hygro-chemo-mechanical damage of concrete. In: Proceedings of EURO-C 2006 on Computational Modelling of Concrete Structures, pp. 533–542 (2006)
    25.de Vree J.H.P., Brekelmans W.A.M., van Gils M.A.J.: Comparison of nonlocal approaches in continuum damage mechanics. Comput. Struct. 55(4), 581–588 (1995)CrossRef
    26.del Piero G.: A variational Approach to fracture and other inelastic phenomena. J. Elast. 112, 3–77 (2013)MathSciNet CrossRef
    27.Eremeyev V.A.: Acceleration waves in micropolar elastic media. Doklady Phys. 50(4), 204–206 (2005)CrossRef
    28.Eremeyev V.A., Freidin A.B., Sharipova L.L.: Nonuniqueness and stability in problems of equilibrium of elastic two-phase bodies. Doklady Phys. 48(7), 359–363 (2003)MathSciNet CrossRef
    29.Eremeyev V.A., Freidin A.B., Sharipova L.L.: The stability of the equilibrium of two-phase elastic solids. PMM J. Appl. Math. Mech. 71(1), 61–84 (2007)MathSciNet CrossRef
    30.Eremeyev V.A., Pietraszkiewicz W.: Phase transitions in thermoelastic and thermoviscoelastic shells. Arch. Mech. 61(1), 41–67 (2009)MathSciNet
    31.Eremeyev, V.A., Pietraszkiewicz, W.: The nonlinear theory of elastic shells with phase transitions. J. Elast. 74(1), 67–86 (2004)
    32.Eremeyev V.A., Pietraszkiewicz W.: Thermomechanics of shells undergoing phase transition. J. Mech. Phys. Solids 59(7), 1395–1412 (2011)MathSciNet CrossRef
    33.dell’Isola, F., Andreaus, U., Placidi, L.: At the origins and in the vanguard of peri-dynamics, non-local and higher gradient continuum mechanics. An underestimated and still topical contribution of Gabrio Piola. Mech. Math. Solids. doi:10.​1177/​1081286513509811​ (2014)
    34.dell’Isola F., Guarascio M., Hutter K.: A variational approach for the deformation of a saturated porous solid. A secondgradient theory extending Terzaghi’s effective stress principle. Arch. Appl. Mech. 70(5), 323–337 (2000)CrossRef
    35.dell’Isola F., Kosiński W.: Deduction of thermodynamic balance laws for bidimensional nonmaterial directed continua modelling interphase layers. Arch. Mech. 45, 333–359 (1993)
    36.dell’Isola F., Madeo A., Placidi L.: Linear plane wave propagation and normal transmission and reflection at discontinuity surfaces in second gradient 3D continua. Z. Angew. Math. Mech. 92(1), 52–71 (2012)MathSciNet CrossRef
    37.dell’Isola F., Madeo A., Seppecher P.: Boundary conditions at fluid-permeable interfaces in porous media: a variational approach. Int. J. Solids Struct. 46, 3150–3164 (2009)MathSciNet CrossRef
    38.dell’Isola F., Placidi L.: Variational principles are a powerful tool also for formulating field theories. In: dell’Isola, F., Gavrilyuk, S. (eds.) Variational Models and Methods in Solid and Fluid Mechanics, chap. 1, pp. 52–71. Springer, New York (2011)
    39.dell’Isola F., Romano A.: On a general balance law for continua with an interface. Ricerche Mat. 35, 325–337 (1986)MathSciNet
    40.dell’Isola F., Romano A.: On the derivation of thermomechanical balance equations for continuous systems with a nonmaterial interface. Int. J. Eng. Sci. 25, 1459–1468 (1987)MathSciNet CrossRef
    41.dell’Isola F., Seppecher P.: Edge contact forces and quasi-balanced power. Meccanica 32, 33–52 (1997)MathSciNet CrossRef
    42.dell’Isola F., Seppecher P.: The relationship between edge contact forces, double forces and interstitial working allowed by the principle of virtual power. Comptes Rendus de l’Academie de Sciences Serie IIb: Mecanique, Physique, Chimie, Astronomie 321, 303–308 (1995)
    43.dell’Isola F., Seppecher P., Madeo A.: How contact interactions may depend on the shape of Cauchy cuts in Nth gradient continua: Approach “àà la D’Alambert”. Zeitschrift fur Angewandte Mathematik und Physik 63(6), 1119–1141 (2012)MathSciNet CrossRef
    44.dell’Isola F., Vidoli S.: Continuum modelling of piezoelectromechanical truss beams: an application to vibration damping. Arch. Appl. Mech. 68, 1–19 (1998)CrossRef
    45.Ferretti, M., Madeo, A., dell’Isola, F., Boisse, P.: Modeling the onset of shear boundary layers in fibrous composite reinforcements by second-gradient theory. Zeitschrift fur Angewandte Mathematik und Physik, 1–26 (2013)
    46.Forest, S.: Micromorphic approach for gradient elasticity, viscoplasticity, and damage. J. Eng. Mech. 135(3), 117–131 (2009)
    47.Fremond, M., Nedjar, B.: Damage, gradient of damage and principle of virtual power. Int. J. Solids Struct. 33(8), 1083–1103 (1996)
    48.Giorgio I., Culla A., Del Vescovo D.: Multimode vibration control using several piezoelectric transducers shunted with a multiterminal network. Arch. Appl. Mech. 79(9), 859–879 (2009)CrossRef
    49.Iafrati A., Carcaterra A., Ciappi A., Campana E.F.: Hydroelastic analysis of a simple oscillator impacting the free surface. J. Ship Res. 44(4), 278–289 (2000)
    50.Kachanov, L.M.: Rupture time under creep conditions, translated in Int. J. Fract. 97, xixviii, 1999 (1958)
    51.Krajcinovic D.: Continuous damage mechanics revisited: basic concepts and definitions. J. Appl. Mech. 52, 829–834 (1985)CrossRef
    52.Krajcinovic D., Rinaldi A.: Statistical Damage Mechanics 1. Theory. J. Appl. Mech. 72, 76–85 (2005)CrossRef
    53.Larsen C.J.: A new variational principle for cohesive fracture and elastoplasticity. Mech. Res. Commun. 58, 133–138 (2014)CrossRef
    54.Lorentz E., Andrieux S.: A variational formulation for nonlocal damage models. Int. J. Plast. 15, 119–138 (1999)CrossRef
    55.Lubliner, J.: Plasticity Theory, revised Edn (PDF), previously published by Pearson Education Inc. (2006)
    56.Luongo A.: Mode localization in dynamics and buckling of linear imperfect continuous structures. Nonlinear Dyn. 25(1–3), 133–156 (2001)MathSciNet CrossRef
    57.Luongo A., Paolone A., Piccardo G.: Postcritical behavior of cables undergoing two simultaneous galloping modes. Meccanica 33(3), 229–242 (1998)CrossRef
    58.Madeo A., Djeran-Maigre I., Rosi G., Silvani C.: The effect of fluid streams in porous media on acoustic compression wave propagation, transmission, and reflection. Contin. Mech. Thermodyn. 25(2-4), 173–196 (2013)MathSciNet CrossRef
    59.Madeo, A., dell’Isola, F., Darve, F.: A continuum model for deformable, second gradient porous media partially saturated with compressible fluids. J. Mech. Phys. Solids 61(11), 2196–2211 (2013)
    60.Madeo A., Gavrilyuk S.: Propagation of acoustic waves in porous media and their reflection and transmission at a pure-fluid/porous-medium permeable interface. Eur. J. Mech. A/Solids 29(5), 897–910 (2010)MathSciNet CrossRef
    61.Madeo A., George D., Lekszycki T., Nierenberger M., Remond Y.: A second gradient continuum model accounting for some effects of micro-structure on reconstructed bone remodeling. Comptes Rendus Mecanique 340(8), 575–589 (2012)CrossRef
    62.Madeo A., Lekszycki T., dell’Isola F.: A continuum model for the bio-mechanical interactions between living tissues and bio-resorbable graft after bone reconstructive surgery. Comptes Rendus Mecanique 339(10), 625–640 (2011)CrossRef
    63.Maurini C., dell’Isola F., Pouget J.: On models of layered piezoelectric beams for passive vibration control. Journal de Physique IV France 115, 307–316 (2004)CrossRef
    64.Maurini C., Pouget J., dell’Isola F.: Extension of the Euler–Bernoulli model of piezoelectric laminates to include 3D effects via a mixed approach. Comput. Struct. 84(22–23), 1438–1458 (2006)CrossRef
    65.Maurini C., Pouget J., dell’Isola F.: On a model of layered piezoelectric beams including transverse stress effect. Int. J. Solids Struct. 41, 4473–4502 (2004)CrossRef
    66.Mendelson, A.: Plasticity: Theory and Applications, MACMILLAN Series in applied mechanics. In: Fred Landis (ed) (1968)
    67.Misra A.: Effect of asperity damage on friction behavior of single fracture. Eng. Fract. Mech. 69(17), 1997–2014 (2002)CrossRef
    68.Misra, A., Singh, V.: Thermodmechaninc-based nonlinear rate-dependent coupled damage-plasticity granular micromechanics model. Contin. Mech. Thermodyn. (2014). doi:10.​1007/​s00161-014-0360-y
    69.Misra A., Yang Y.: Micromechanical model for cohesive materials based upon pseudo-granular structure. Int. J. Solids Struct. 47(21), 2970–2981 (2010)CrossRef
    70.Nedoushan R.J., Farzin M., Mashayekhi M.: A micro-structural model for prediction of void initiation in superplastic forming. Int. J. Damage Mech. 5, 403 (1996)CrossRef
    71.Paas M.H.J.W., Oomens C.W.J., Schreurs P.J.G., Janssen J.D.: The mechanical behaviour of continuous media with stochastic damage. Eng. Fract. Mech. 36(2), 255–266 (1990)CrossRef
    72.Pagnini L.: Reliability analysis of wind excited structures. J. Wind Eng. Ind. Aerodyn. 98(1), 1–9 (2010)MathSciNet CrossRef
    73.Pasic H.: A unified approach of fracture and damage mechanics to fatigue damage problems. Int. J. Solids Struct. 29(14-15), 1957–1968 (1992)CrossRef
    74.Pham K., Marigo J.-J.: Approche variationnelle de l’endommagement: I. Les concepts fondamentaux. C. R. Mécanique 338, 191–198 (2010)CrossRef
    75.Pham K., Marigo J.-J.: Approche variationnelle de l’endommagement: II. Les modèles à à gradient. C. R. Mécanique 338, 199–206 (2010)CrossRef
    76.Pham K., Marigo J.-J., Maurini C.: The issue of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. J. Mech. Phys. Solids 59, 1163–1190 (2011)MathSciNet CrossRef
    77.Pietraszkiewicz W., Eremeyev V.A., Konopińska V.: Extended non-linear relations of elastic shells undergoing phase transitions. ZAMM 87(2), 150–159 (2007)MathSciNet CrossRef
    78.Placidi, L.: A variational approach for a 1-dimensional second gradient continuum damage model. Contin. Mech. Thermodyn. February (2014). doi:10.​1007/​s00161-014-0338-9
    79.Placidi L., dell’Isola F., Ianiro N., Sciarra G.: Variational formulation of pre-stressed solidfluid mixture theory, with an application to wave phenomena. Eur. J. Mech. A/Solids 27, 582–606 (2008)MathSciNet CrossRef
    80.Placidi L., Faria S.H., Hutter K.: On the role of grain growth, recrystallization and polygonization in a continnuum theory for anisotropic ice sheets. Ann. Glaciol. 39, 49–52 (2004)CrossRef
    81.Placidi L., Rosi G., Giorgio I., Madeo A.: Reflection and transmission of plane waves at surfaces carrying material properties and embedded in second gradient materials. Math. Mech. Solids 92(1), 1–24 (2013)
    82.Reddy B.D.: The role of dissipation and defect energy in variational formulations of problems in strain-gradient plasticity Part. 1: polycrystalline plasticity. Contin. Mech. Thermodyn. 23, 527–549 (2011)MathSciNet CrossRef
    83.Rinaldi A.: A rational model for 2D disordered lattices under uniaxial loading. Int. J. Damage Mech. 18, 233–257 (2009)CrossRef
    84.Rinaldi A.: Bottom-up modeling of damage in heterogeneous quasi
    ittle solids. Contin. Mech. Thermodyn. 25(2–4), 359–373 (2013)CrossRef
    85.Rinaldi A.: Statistical model with two order parameters for ductile and soft fiber bundles in nanoscience and biomaterials. Pys. Rev. E 83(2–4), 046126 (2011)
    86.Rinaldi A., Krajcinovic K., Peralta P., Lai Y.-C.: Modeling polycrystalline microstructures with lattice models: a quantitative approach. Mech. Mater. 40, 17–36 (2008)CrossRef
    87.Rinaldi A., Lai Y.-C.: Statistical damage theory of 2d lattices: energetics and physical foundations of damage parameter. Int. J. Plast. 23, 1796–1825 (2007)CrossRef
    88.Rinaldi A., Mastilovic S., Krajcinovic D.: Staistical damage mechanics—2 Constitutive relations. J. Theor. Appl. Mech. 44(3), 585–602 (2006)
    89.Rinaldi, A., Placidi, L.: A microscale second gradient approximation of the damage parameter of quasi
    ittle heterogeneous lattices. Zeitschrift fuer Angewandte Mathematik und Mechanik, 1–16 (2013). doi:10.​1002/​zamm.​201300028
    90.Rosi G., Madeo A., Guyader J.-L.: Switch between fast and slow Biot compression waves induced by second gradient microstructure at material discontinuity surfaces in porous media. Int. J. Solids Struct. 50(10), 1721–1746 (2013)CrossRef
    91.Rosi G., Paccapeli R., Ollivier F., Pouget J.: Optimization of piezoelectric patch positioning for passive sound radiation control of plates. J. Vib. Control 19(5), 658–673 (2013)MathSciNet CrossRef
    92.Roveri N., Carcaterra A., Akay A.: Energy equipartition and frequency distribution in complex attachments. J. Acoust. Soc. Am. 126(1), 122–128 (2009)CrossRef
    93.Silling S.A., Lehoucq R.B.: Convergence of peridynamics to classical elasticity theory. J. Elast. 93, 13–37 (2008)MathSciNet CrossRef
    94.Silling S.A., Epton M., Weckner O., Xu J., Askari E.: Peridynamic states and constitutive modelling. J. Elast. 88, 151–184 (2007)MathSciNet CrossRef
    95.Solari G., Pagnini L.C., Piccardo G.: A numerical algorithm for the aerodynamic identification of structures. J. Wind Eng. Ind. Aerodyn. 69–71, 719–730 (1997)CrossRef
    96.Sun X., Wimmer S.W., Karrt D.G.: Shear band initiation of brittle damage materials. Int. J. Damage Mech. 5, 403 (1996)CrossRef
    97.Triantafyllidis N., Aifantis E.C.: A gradient approach to localization of deformation. I. Hyperelastic materials. J. Elast. 16, 225–237 (1986)MathSciNet CrossRef
    98.Yang Y., Misra A.: Micromechanics based second gradient continuum theory for shear band modeling in cohesive granular materials following damage elasticity. Int. J. Solids Struct. 49, 2500–2514 (2012)CrossRef
    99.Yang Y., Misra A.: Higher-order stress-strain theory for damage modeling implemented in an element-free Galerkin formulation. Comput. Model. Eng. Sci. 64(1), 1–36 (2010)MathSciNet
    100.Yang Y., Ching W.Y., Misra A.: Higher-order continuum theory applied to fracture simulation of nano-scale intergranular glassy film. J. Nanomech. Micromech. 1(2), 60–71 (2011)CrossRef
  • 作者单位:Luca Placidi (1) (2)

    1. Engineering Faculty, International Telematic University Uninettuno, Rome, Italy
    2. C.so Vittorio Emanuele II, 39, 00186, Rome, Italy
  • 刊物类别:Engineering
  • 刊物主题:Theoretical and Applied Mechanics
    Engineering Thermodynamics and Transport Phenomena
    Mechanics, Fluids and Thermodynamics
    Structural Materials
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1432-0959
文摘
A one-dimensional displacement second-gradient damage continuum theory has been already presented within the framework of a variational approach. Damage is associated with strain concentration. Therefore, not only non-local effects of displacement second-gradient modelling should be considered in a comprehensive model, but also any plastic effects. The aim of this paper is therefore to extend such a model to plasticity. The action is intended to depend not only with respect to first and second gradient of displacement field and to a scalar damage field, but also to further two internal variables, i.e. the accumulated plastic tension and the accumulated plastic compression. A constitutive prescription on the stiffness is given in terms of the scalar damage parameter in a usual way, i.e. as in many other works, it is prescribed to decrease as far as the damage increases. On the other hand, the microstructural material length (i.e. the square of the constitutive function in front of the squared displacement second-gradient term in the action functional) is prescribed to increase as far as the damage increases, being this last assumption connected to the interpretation that a damage state induces a microstructure in the continuum and that such a microstructure is more important as far as the damage increases. Initial damage threshold and yield stresses are naturally introduced in the action in front of linear terms, respectively, of damage and plastic internal variables. The hardening matrix is also introduced in a natural way as the coefficient matrix in front of the quadratic terms of the two plastic internal variables. At a given value of damage and plastic parameters, the behaviour is referred to second-gradient linear elastic material. However, the damage and plastic evolutions make the model not only nonlinear, but also inelastic. The second principle of thermodynamics is considered by assuming that the scalar damage and plastic parameters do not decrease their values in the process of deformation, and this implies a dissipation for the elastic strain energy. A novel result of this investigation, where displacement second-gradient and plastic effects are combined, is that the distributed and concentrated external double forces do not make work on the displacement gradient but only to its elastic part and this means that the displacement gradient cannot be prescribed, at the border, independently of the plastic internal variables. Keywords Damage Plasticity Variation Microstructure Strain Gradient

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700