Entransy dissipation, entransy-dissipation-based thermal resistance and optimization of one-stream hybrid thermal network
详细信息    查看全文
  • 作者:WenHua Wang (1)
    XueTao Cheng (1)
    XinGang Liang (1)
  • 关键词:entransy dissipation ; thermal resistance ; entropy generation ; hybrid thermal network ; heat transfer optimization
  • 刊名:SCIENCE CHINA Technological Sciences
  • 出版年:2013
  • 出版时间:February 2013
  • 年:2013
  • 卷:56
  • 期:2
  • 页码:529-536
  • 全文大小:665KB
  • 参考文献:1. Zhang X R, Ren J X, Liang X G, et al. Optimization of the thermal network in parallel connect ion of manned spacecraft (in Chinese). J Tsinghua Univ (Sci & Tech), 2002, 42: 462鈥?65
    2. Weiss W. Solar Heating Systems for Houses: A Design Handbook for Solar Combi-systems. London: Earthscan Publications Ltd., 2004
    3. Calame J P, Park D, Bass R, et al. Investigation of hierarchically branched-microchannel coolers fabricated by deep reactive ion etching for electronics cooling applications. J Heat Trans-T ASME, 2009, 131: 51401 CrossRef
    4. Shao B D, Wang L F, Li J Y. Application of thermal resistance network model in optimization design of micro-channel cooling heat sink. Int J Numer Method H, 2009, 19: 535鈥?45 CrossRef
    5. Linnhoff B, Flower J R. Synthesis of heat exchanger networks: sys-tematic generation of energy optimal networks. AIChE J, 1978, 24: 633鈥?42 CrossRef
    6. Linnhoff B, Vredeveeld D. Pinch technology has come of age. Chem. Eng Prog, 1984, 80: 33鈥?0
    7. Floudas C A, Ciric A R, Grossma+n I E. Automatic synthesis of optimum heat exchanger networks configuration. AIChEJ, 1986, 32: 276鈥?90 CrossRef
    8. Cheng X T, Xu X H, Ren J X, et al. Optimization of liquid cooling networks with couple parallel connections using Lagrange multipliers (in Chinese). J Tsinghua Univ (Sci & Tech), 2008, 48: 1359鈥?361
    9. Ren J X, Zhang X R, Wu H, et al. Optimization analysis of thermal network layout. 5th International Symposium on Heat Transfer. Beijing, 2000
    10. Zhang X R, Ren J X, Liang X G, et al. Global mass optimization of spacecraft thermal control loop (in Chinese). J Tsinghua Univ (Sci & Tech), 2002, 42: 203鈥?06
    11. Bejan A. Advanced Engineering Thermodynamics (2nd edn). New York: John Wiley & Sons, 1997
    12. Shah R K, Skiepko T. Entropy generation extrema and their relationship with heat exchanger effectiveness-Number of transfer unit behavior for complex flow arrangements. J Heat Transfer Tran ASME, 2004, 126: 994鈥?002 CrossRef
    13. Cheng X T, Liang X G. Computation of effectiveness of two-stream heat exchanger networks based on concepts of entropy generation, entransy dissipation and entransy-dissipation-based thermal resistance. Energ Convers Manage, 2012, 58: 163鈥?70 CrossRef
    14. Guo Z Y, Liang X G, Zhu H Y. Entransy-a physical quantity describing heat transfer ability (in Chinese). Prog Nat Sci, 2006, 16: 1288鈥?296 CrossRef
    15. Guo Z Y, Zhu H Y, Liang X G. Entransy-A physical quantity describing heat transfer ability. Int J Heat Mass Tran, 2007, 50: 2545鈥?556 CrossRef
    16. Guo Z Y, Liu X B, Tao W Q, et al. Effectiveness-thermal resistance method for heat exchanger design and analysis. Int J Heat Mass Transfer, 2010, 53: 2877鈥?884 CrossRef
    17. Qian X D, Li Z X. Analysis of entransy dissipation in heat exchangers. Int J Therm Sci, 2011, 50: 608鈥?14 thermalsci.2010.11.004">CrossRef
    18. Xu M T, Cheng L, Guo J F. An application of entransy dissipation theory to heat exchanger design (in Chinese). J Eng Thermophys, 2009, 30: 2090鈥?092
    19. Cheng X T, Zhang Q Z, Liang X G. Analyses of entransy dissipation, entropy generation and entransy-dissipation-based thermal resistance on heat exchanger optimization. Appl Therm Eng, 2012, 38: 31鈥?9 thermaleng.2012.01.017">CrossRef
    20. Wei S H, Chen L G, Sun F R. 鈥淰olume-Point鈥?heat conduction constructal optimization with entransy dissipation minimization objective based on rectangular element. Sci China Ser E-Tech Sci, 2008, 51: 1283鈥?295 CrossRef
    21. Chen L G, Wei S H, Sun F R. Constructal entransy dissipation rate minimization of a disc. Int J Heat Mass Transfer, 2011, 54: 210鈥?16 CrossRef
    22. Liu W, Liu Z, Jia H, et al. Entransy expression of the second law of thermodynamics and its application to optimization in heat transfer process. Int J Heat Transfer, 2011, 54: 3049鈥?059 CrossRef
    23. Xiao Q H, Chen L G, Sun F R. Constructal entransy dissipation rate minimization for a heat generating volume cooled by forced convection. Chin Sci Bull, 2011, 56: 2966鈥?973 CrossRef
    24. Xie Z H, Chen L G, Sun F R. Constructal optimization on T-shaped cavity based on entransy dissipation minimization. Chin Sci Bull, 2009, 54: 4418鈥?427 CrossRef
    25. Feng H J, Chen L G, Sun F R. Constructal entransy dissipation rate minimization for leaf-like fins. Sci China Tech Sci, 2012, 55: 515鈥?26 CrossRef
    26. Chen L G. Progress in study on constructal theory and its applications. Sci China Tech Sci, 2012, 55: 802鈥?20 CrossRef
    27. Chen L, Chen Q, Li Z, et al. Optimization for a heat exchanger couple based on the minimum thermal resistance principle. Int J Heat Mass Tran, 2009, 52: 4778鈥?784 CrossRef
    28. Qian X D, Li Z, Li Z X. Entransy-dissipation-based thermal resistance analysis of heat exchanger networks. Chin Sci Bull, 2011, 56: 3289鈥?295 CrossRef
    29. Chen Q, Wu J, Wang M R, et al. A comparison of optimization theories for energy conservation in heat exchanger groups. Chin Sci Bull, 2011, 56: 449鈥?54 CrossRef
    30. Cheng X T. Entransy (potential entransy) decrease principle and entransy analyses of radiative heat transfer (in Chinese). Dissertation of doctoral degree. Beijing: Tsinghua University, 2011
    31. Cheng X T, Xu X H, Liang X G. Application of entransy to optimization design for parallel thermal network of thermal control system in spacecraft. Sci China Tech Sci, 2011, 54: 964鈥?71 CrossRef
    32. Yang S M, Tao W Q. Heat Transfer (in Chinese). Beijing: High Education Press, 1998
    33. Cai D Y, Bai F S. Modern Scientific Calculation (in Chinese). Beijing: Science Press, 2000
    34. Cheng X G. Entransy and its applications in heat transfer optimization (in Chinese). Dissertation of doctoral degree. Beijing: Tsinghua University, 2004
    35. Chen Q, Zhu H Y, Pan N, et al. An alternative criterion in heat transfer optimization. P Roy Soc A-Math Phy, 2011, 467: 1012鈥?028 CrossRef
  • 作者单位:WenHua Wang (1)
    XueTao Cheng (1)
    XinGang Liang (1)

    1. Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Engineering Mechanics, Tsinghua University, Beijing, 100084, China
  • ISSN:1869-1900
文摘
The one-stream hybrid thermal network is analyzed and discussed based on the entransy theory, and the results are compared with those from the entropy generation optimization. The theoretical analysis indicates that the minimum heat-flow-weighted temperature of the thermal networks corresponds to the minimum entransy dissipation rate and the minimum thermal resistance. For a simple hybrid thermal network consisting of three thermal components, the expression of entransy dissipation is conducted, and the heat transfer area and the mass flow rate are calculated and optimized. The optimal results are obtained in order to minimize the entransy dissipation and the thermal resistance. The optimal results are calculated for various combinations, such as series connection, parallel connection and other hybrid connections. The numerical results are in accordance with the theoretical analysis. Both the theoretical analysis and the numerical results show that the minimum entransy dissipation and the minimum thermal resistance correspond to the minimum heat-flow-weighted temperature of the thermal networks while the minimum entropy generation does not.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700