Interpretation of high-temperature tensile properties by thermodynamically calculated equilibrium phase diagrams of heat-resistant austenitic cast steels
详细信息    查看全文
文摘
High-temperature tensile properties of three heat-resistant austenitic cast steels fabricated by varying W, Mo, and Al contents were interpreted by thermodynamically calculated equilibrium phase diagrams of austenite, ferrite, and carbides as well as microstructural analyses. A two-step calculation method was adopted to cast steel microstructures below the liquid dissolution temperature because the casting route was not an equilibrium state. Thermodynamically calculated fractions of equilibrium phases were well matched with experimentally measured fractions. Ferrites existed at room and high temperatures in both equilibrium phase diagrams and actual microstructures, which has not been reported in previous researches on austenitic cast steels. In the W2Mo1Al1 steel, 38% and 12% of ferrite existed in the equilibrium phase diagram and actual microstructure, respectively, and led to the void initiation and coalescence at ferrites and consequently to the serious deterioration of high-temperature strengths. The present equilibrium phase diagrams, besides detailed microstructural analyses, effectively evaluated the high-temperature performance by estimating high-temperature equilibrium phases, and provided an important idea on whether ferrite were formed or not in the heat-resistant austenitic cast steels.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700