Implication of long-distance cytoplasmic transport into dynamics of local pH on the surface of microinjured Chara cells
详细信息    查看全文
文摘
Cytoplasmic streaming is essential for intracellular communications but its specific functions are not well known. In Chara corallina internodes, long-distance interactions mediated by cyclosis are clearly evident with microscopy-pulse amplitude modulation (PAM) fluorometer under application of localized light (LL) pulses to a remote cell region. Measurements of LL-induced profiles of chlorophyll fluorescence F′ at various distances from the LL source suggest that illuminated chloroplasts release into the streaming cytoplasm excess reducing equivalents that are entrained by the fluid flow and transiently reduce the intersystem electron carriers in chloroplasts of downstream shaded areas. The reducing equivalents propagate to distances up to 4.5 mm from the LL source, with the transport rate nearly equal to the velocity of liquid flow. The F′ transients disappeared after the arrest of streaming with cytochalasin D and reappeared upon its recovery in washed cells. The F′ responses to a distant LL were used as an indicator for the passage of cytosolic reductants across the analyzed cell area during measurements of cell surface pH (pHo) in intact and microperforated internodes. In microwounded cell regions, the LL-induced increase in F′ occurred synchronously with the increase in pHo, by contrast to a slight decrease in pHo observed prior to perforation. The results show that reducing agents transported with the cytoplasmic flow are involved in rapid pH changes on the surface of microinjured cells. A possibility is considered that cytoplasmic reductants are processed by stress-activated plasmalemmal NADPH oxidase carrying electrons to oxygen with the eventual H+ consumption on the outer cell side.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700