A prognostic model for lymph node-negative breast cancer patients based on the integration of proliferation and immunity
详细信息    查看全文
  • 作者:Ensel Oh (1)
    Yoon-La Choi (2)
    Taesung Park (13)
    Seungyeoun Lee (4)
    Seok Jin Nam (5)
    Young Kee Shin (167) ykeeshin@snu.ac.kr
  • 关键词:Lymph node ; negative breast cancer &#8211 ; Prognostic genes &#8211 ; Proliferation &#8211 ; Immune response &#8211 ; Parametric model &#8211 ; Gene signature
  • 刊名:Breast Cancer Research and Treatment
  • 出版年:2012
  • 出版时间:April 2012
  • 年:2012
  • 卷:132
  • 期:2
  • 页码:499-509
  • 全文大小:781.6 KB
  • 参考文献:1. Chang HY, Sneddon JB, Alizadeh AA, Sood R, West RB et al (2004) Gene expression signature of fibroblast serum response predicts human cancer progression: similarities between tumors and wounds. PLoS Biol 2:E7
    2. van de Vijver MJ, He YD, van’t Veer LJ, Dai H, Hart AA et al (2002) A gene-expression signature as a predictor of survival in breast cancer. N Engl J Med 347:1999–2009
    3. van ‘t Veer LJ, Dai H, van de Vijver MJ, He YD, Hart AA et al (2002) Gene expression profiling predicts clinical outcome of breast cancer. Nature 415:530–536
    4. Wang Y, Klijn JG, Zhang Y, Sieuwerts AM, Look MP et al (2005) Gene-expression profiles to predict distant metastasis of lymph-node-negative primary breast cancer. Lancet 365:671–679
    5. Buyse M, Loi S, van’t Veer L, Viale G, Delorenzi M et al (2006) Validation and clinical utility of a 70-gene prognostic signature for women with node-negative breast cancer. J Natl Cancer Inst 98:1183–1192
    6. Paik S (2007) Development and clinical utility of a 21-gene recurrence score prognostic assay in patients with early breast cancer treated with tamoxifen. Oncologist 12:631–635
    7. Paik S, Shak S, Tang G, Kim C, Baker J et al (2004) A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. N Engl J Med 351:2817–2826
    8. Sotiriou C, Wirapati P, Loi S, Harris A, Fox S et al (2006) Gene expression profiling in breast cancer: understanding the molecular basis of histologic grade to improve prognosis. J Natl Cancer Inst 98:262–272
    9. Pawitan Y, Bjohle J, Amler L, Borg AL, Egyhazi S et al (2005) Gene expression profiling spares early breast cancer patients from adjuvant therapy: derived and validated in two population-based cohorts. Breast Cancer Res 7:R953–R964
    10. Miller LD, Smeds J, George J, Vega VB, Vergara L et al (2005) An expression signature for p53 status in human breast cancer predicts mutation status, transcriptional effects, and patient survival. Proc Natl Acad Sci USA 102:13550–13555
    11. Bild AH, Yao G, Chang JT, Wang Q, Potti A et al (2006) Oncogenic pathway signatures in human cancers as a guide to targeted therapies. Nature 439:353–357
    12. Teschendorff AE, Naderi A, Barbosa-Morais NL, Pinder SE, Ellis IO et al (2006) A consensus prognostic gene expression classifier for ER positive breast cancer. Genome Biol 7:R101
    13. Desmedt C, Piette F, Loi S, Wang Y, Lallemand F et al (2007) Strong time dependence of the 76-gene prognostic signature for node-negative breast cancer patients in the TRANSBIG multicenter independent validation series. Clin Cancer Res 13:3207–3214
    14. Sparano JA, Paik S (2008) Development of the 21-gene assay and its application in clinical practice and clinical trials. J Clin Oncol 26:721–728
    15. Cardoso F, Van’t Veer L, Rutgers E, Loi S, Mook S et al (2008) Clinical application of the 70-gene profile: the MINDACT trial. J Clin Oncol 26:729–735
    16. Ein-Dor L, Kela I, Getz G, Givol D, Domany E (2005) Outcome signature genes in breast cancer: is there a unique set? Bioinformatics 21:171–178
    17. Michiels S, Koscielny S, Hill C (2005) Prediction of cancer outcome with microarrays: a multiple random validation strategy. Lancet 365:488–492
    18. Kim SY (2009) Effects of sample size on robustness and prediction accuracy of a prognostic gene signature. BMC Bioinformatics 10:147
    19. Hummel M, Metzeler KH, Buske C, Bohlander SK, Mansmann U (2008) Association between a prognostic gene signature and functional gene sets. Bioinformatics Biol Insights 2:329–341
    20. Pfeffer U, Romeo F, Noonan DM, Albini A (2009) Prediction of breast cancer metastasis by genomic profiling: where do we stand? Clin Exp Metastasis 26:547–558
    21. Ein-Dor L, Zuk O, Domany E (2006) Thousands of samples are needed to generate a robust gene list for predicting outcome in cancer. Proc Natl Acad Sci USA 103:5923–5928
    22. van Vliet MH, Reyal F, Horlings HM, van de Vijver MJ, Reinders MJ et al (2008) Pooling breast cancer datasets has a synergetic effect on classification performance and improves signature stability. BMC Genomics 9:375
    23. Yasrebi H, Sperisen P, Praz V, Bucher P (2009) Can survival prediction be improved by merging gene expression data sets? PLoS One 4:e7431
    24. Fan C, Oh DS, Wessels L, Weigelt B, Nuyten DS et al (2006) Concordance among gene-expression-based predictors for breast cancer. N Engl J Med 355:560–569
    25. Reyal F, van Vliet MH, Armstrong NJ, Horlings HM, de Visser KE et al (2008) A comprehensive analysis of prognostic signatures reveals the high predictive capacity of the proliferation, immune response and RNA splicing modules in breast cancer. Breast Cancer Res 10:R93
    26. Yu JX, Sieuwerts AM, Zhang Y, Martens JW, Smid M et al (2007) Pathway analysis of gene signatures predicting metastasis of node-negative primary breast cancer. BMC Cancer 7:182
    27. Kim SY, Kim YS (2008) A gene sets approach for identifying prognostic gene signatures for outcome prediction. BMC Genomics 9:177
    28. Thomassen M, Tan Q, Kruse TA (2008) Gene expression meta-analysis identifies metastatic pathways and transcription factors in breast cancer. BMC Cancer 8:394
    29. Schmidt M, Bohm D, von Torne C, Steiner E, Puhl A et al (2008) The humoral immune system has a key prognostic impact in node-negative breast cancer. Cancer Res 68:5405–5413
    30. Loi S, Haibe-Kains B, Desmedt C, Lallemand F, Tutt AM et al (2007) Definition of clinically distinct molecular subtypes in estrogen receptor-positive breast carcinomas through genomic grade. J Clin Oncol 25:1239–1246
    31. Loi S, Haibe-Kains B, Desmedt C, Wirapati P, Lallemand F et al (2008) Predicting prognosis using molecular profiling in estrogen receptor-positive breast cancer treated with tamoxifen. BMC Genomics 9:239
    32. Zhang Y, Sieuwerts AM, McGreevy M, Casey G, Cufer T et al (2009) The 76-gene signature defines high-risk patients that benefit from adjuvant tamoxifen therapy. Breast Cancer Res Treat 116:303–309
    33. Symmans WF, Hatzis C, Sotiriou C, Andre F, Peintinger F et al (2010) Genomic index of sensitivity to endocrine therapy for breast cancer. J Clin Oncol 28:4111–4119
    34. Dai M, Wang P, Boyd AD, Kostov G, Athey B et al (2005) Evolving gene/transcript definitions significantly alter the interpretation of GeneChip data. Nucleic Acids Res 33:e175
    35. Irizarry RA, Bolstad BM, Collin F, Cope LM, Hobbs B et al (2003) Summaries of Affymetrix GeneChip probe level data. Nucleic Acids Res 31:e15
    36. Tusher VG, Tibshirani R, Chu G (2001) Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci USA 98:5116–5121
    37. Hougaard P (1999) Fundamentals of survival data. Biometrics 55:13–22
    38. Akaike H (1974) A new look at the statistical model identification. IEEE Trans Autom Control 19:716–723
    39. Garidou L, Laffont S, Douin-Echinard V, Coureau C, Krust A et al (2004) Estrogen receptor alpha signaling in inflammatory leukocytes is dispensable for 17beta-estradiol-mediated inhibition of experimental autoimmune encephalomyelitis. J Immunol 173:2435–2442
    40. Schmidt M, Hengstler JG, von Torne C, Koelbl H, Gehrmann MC (2009) Coordinates in the universe of node-negative breast cancer revisited. Cancer Res 69:2695–2698
    41. Calabro A, Beissbarth T, Kuner R, Stojanov M, Benner A et al (2009) Effects of infiltrating lymphocytes and estrogen receptor on gene expression and prognosis in breast cancer. Breast Cancer Res Treat 116:69–77
    42. Finak G, Bertos N, Pepin F, Sadekova S, Souleimanova M et al (2008) Stromal gene expression predicts clinical outcome in breast cancer. Nat Med 14:518–527
    43. Ma XJ, Dahiya S, Richardson E, Erlander M, Sgroi DC (2009) Gene expression profiling of the tumor microenvironment during breast cancer progression. Breast Cancer Res 11:R7
    44. Mould RF, Boag JW (1975) A test of several parametric statistical models for estimating success rate in the treatment of carcinoma cervix uteri. Br J Cancer 32:529–550
    45. Rutqvist LE, Wallgren A, Nilsson B (1984) Is breast cancer a curable disease? A study of 14,731 women with breast cancer from the Cancer Registry of Norway. Cancer 53:1793–1800
    46. Boag JW (1949) Maximum likelihood estimates of the proportion of patients cured by cancer therapy. J Royal Stat Soc 11:15–44
    47. Tai P, Yu E, Shiels R, Tonita J (2005) Long-term survival rates of laryngeal cancer patients treated by radiation and surgery, radiation alone, and surgery alone: studied by lognormal and Kaplan-Meier survival methods. BMC Cancer 5:13
    48. Claret L, Girard P, Hoff PM, Van Cutsem E, Zuideveld KP et al (2009) Model-based prediction of phase III overall survival in colorectal cancer on the basis of phase II tumor dynamics. J Clin Oncol 27:4103–4108
    49. Potti A, Dressman HK, Bild A, Riedel RF, Chan G et al (2006) Genomic signatures to guide the use of chemotherapeutics. Nat Med 12:1294–1300
    50. Bonnefoi H, Potti A, Delorenzi M, Mauriac L, Campone M et al (2007) Validation of gene signatures that predict the response of breast cancer to neoadjuvant chemotherapy: a substudy of the EORTC 10994/BIG 00–01 clinical trial. Lancet Oncol 8:1071–1078
    51. Potti A, Mukherjee S, Petersen R, Dressman HK, Bild A et al (2006) A genomic strategy to refine prognosis in early-stage non-small-cell lung cancer. N Engl J Med 355:570–580
    52. Hsu DS, Balakumaran BS, Acharya CR, Vlahovic V, Walters KS et al (2007) Pharmacogenomic strategies provide a rational approach to the treatment of cisplatin-resistant patients with advanced cancer. J Clin Oncol 25:4350–4357
  • 作者单位:1. Interdisciplinary Program in Bioinformatics, College of Natural Science, Seoul National University, Seoul, Korea2. Laboratory of Cancer Genomics and Molecular Pathology, Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea3. Department of Statistics, College of Natural Science, Seoul National University, Seoul, Korea4. Department of Applied Statistics, College of Natural Science, Sejoung University, Seoul, Korea5. Division of Breast and Endocrine Surgery, Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea6. Research Institute of Pharmaceutical Science, Department of Pharmacy, Seoul National University College of Pharmacy, Seoul, Korea7. Laboratory of Molecular Pathology and Cancer Genomics, Department of Pharmacy, College of Pharmacy, Seoul National University, 599 Gwanak-ro, Gwanak-gu, Seoul, 151-742 Korea
  • 刊物类别:Medicine
  • 刊物主题:Medicine & Public Health
    Oncology
  • 出版者:Springer Netherlands
  • ISSN:1573-7217
文摘
A model for a more precise prognosis of the risk of relapse is needed to avoid overtreatment of lymph node-negative breast cancer patients. A large derivation data set (n = 684) was generated by pooling three independent breast cancer expression microarray data sets. Two major prognostic factors, proliferation and immune response, were identified among genes showing significant differential expression levels between the good outcome and poor outcome groups. For each factor, four proliferation-related genes (p-genes) and four immunity-related genes (i-genes) were selected as prognostic genes, and a prognostic model for lymph node-negative breast cancer patients was developed using a parametric survival analysis based on the lognormal distribution. The p-genes showed a predominantly negative correlation (coefficient: −0.603) with survival time, while the i-genes showed a positive correlation (coefficient: 0.243), reflecting the beneficial effect of the immune response against deleterious proliferative activity. The prognostic model shows that approximately 54% of lymph node-negative breast cancer patients were predicted to be distant metastasis-free for more than 5 years with at least 85% survival probability. The prognostic model showed a robust and high prognostic performance (HR 2.85–3.45) through three external validation data sets. Based on the integration of proliferation and immunity, the new prognostic model is expected to improve clinical decision making by providing easily interpretable survival probabilities at any time point and functional causality of the predicted prognosis with respect to proliferation and immune response.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700