Ecology predicts parapatric distributions in two closely related Antirrhinum majus subspecies
详细信息    查看全文
  • 作者:A. Khimoun (1) (2)
    J. Cornuault (1) (2)
    M. Burrus (1) (2)
    B. Pujol (1) (2)
    C. Thebaud (1) (2)
    C. Andalo (1) (2)
  • 关键词:Antirrhinum majus ; Parapatry ; Niche modeling ; Niche divergence ; Ecological character displacement
  • 刊名:Evolutionary Ecology
  • 出版年:2013
  • 出版时间:January 2013
  • 年:2013
  • 卷:27
  • 期:1
  • 页码:51-64
  • 全文大小:405KB
  • 参考文献:1. Andalo C, Cruzan MB, Cazettes C et al (2010) Post-pollination barriers do not explain the persistence of two distinct / Antirrhinum subspecies with parapatric distribution. Plant Syst Evol 286:223鈥?34 CrossRef
    2. Anderson S, Evensen MK (1978) Randomness in allopatric speciation. Syst Zool 27:421鈥?30 CrossRef
    3. Araujo MB, Pearson RG, Thuiller W, Erhard M (2005) Validation of species-climate impact models under climate change. Glob Chang Biol 11:1504鈥?513 CrossRef
    4. Brown WL, Wilson EO (1956) Character displacement. Syst Zool 5:49鈥?4 CrossRef
    5. Buermann W, Saatchi S, Smith TB et al (2008) Predicting species distributions across the Amazonian and Andean regions using remote sensing data. J Biogeogr 35:1160鈥?176 CrossRef
    6. Bull CM (1991) Ecology of parapatric distributions. Annu Rev Ecol Syst 22:19鈥?6 CrossRef
    7. Cicero C (2004) Barriers to sympatry between avian sibling species (Paridae: Baeolophus) in local secondary contact. Evolution 58:1573鈥?587
    8. Connor EF, Bowers MA (1987) The spatial consequences of interspecific competition. Ann Zool Fennici 24:213鈥?26
    9. Currat M, Ruedi M, Petit RJ, Excoffier L (2008) The hidden side of invasions: massive introgression by local genes. Evolution 62:1908鈥?920
    10. Dayan T, Simberloff D (2005) Ecological and community-wide character displacement: the next generation. Ecol Lett 8:875鈥?94 CrossRef
    11. Dobzhansky T (1951) Genetics and the origin of species. Columbia University Press, New York
    12. Elith J, Graham CH, Anderson RP et al (2006) Novel methods improve prediction of species鈥?distributions from occurrence data. Ecography 29:129鈥?51 CrossRef
    13. Fielding AH, Bell JF (1997) A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ Conserv 24:38鈥?9 CrossRef
    14. Funk DJ (1998) Isolating a role for natural selection in speciation: host adaptation and sexual isolation in / Neochlamisus bebbianae leaf beetles. Evolution 52:1744鈥?759 CrossRef
    15. Garcia-Ramos G, Sanchez-Garduno F, Maini PK (2000) Dispersal can sharpen parapatric boundaries on a spatially varying environment. Ecology 81:749鈥?60
    16. Graham CH, Ron SR, Santos JC, Schneider CJ, Moritz C (2004) Integrating phylogenetics and environmental niche models to explore speciation mechanisms in dendrobatid frogs. Evolution 58:1781鈥?793
    17. Grenouillet G, Buisson L, Casajus N, Lek S (2010) Ensemble modelling of species distribution: the effects of geographical and environmental ranges. Ecography 34:9鈥?7 CrossRef
    18. Guisan A, Thuiller W (2005) Predicting species distribution: offering more than simple habitat models. Ecol Lett 8:993鈥?009 CrossRef
    19. Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965鈥?978 CrossRef
    20. Holt RD (2003) On the evolutionary ecology of species鈥欌€?ranges. Evol Ecol Res 5:159鈥?78
    21. Hutchinson GE (1953) The concept of pattern of ecology. Proc Acad Nat Sci Phila 105:1鈥?2
    22. Justice CO, Vermote E, Townshend JRG et al (1998) The moderate resolution imaging spectroradiometer (MODIS): land remote sensing for global change research. IEEE Transact Geosci Remote 36:1228鈥?249 CrossRef
    23. Khimoun A, Burrus M, Andalo C et al (2011) Locally asymmetric introgressions between subspecies suggest circular range expansion at the / Antirrhinum majus global scale. J Evol Biol 24:1433鈥?441 CrossRef
    24. King M (1993) Species evolution: the role of chromosome change. Cambridge University Press, Cambridge
    25. Kozak KH, Graham CH, Wiens JJ (2008) Integrating GIS-based environmental data into evolutionary biology. Trends Ecol Evol 23:141鈥?48 CrossRef
    26. Kremen C, Cameron A, Moilanen A et al (2008) Aligning conservation priorities across taxa in Madagascar with high-resolution planning tools. Science 320:222鈥?26 CrossRef
    27. Losos JB (2000) Ecological character displacement and the study of adaptation. Proc Natl Acad Sci USA 97:5693鈥?695 CrossRef
    28. McCormack JE, Zellmer AJ, Knowles LL (2010) Does niche divergence accompany allopatric divergence in / Aphelocoma jays as predicted under ecological speciation? insights from tests with niche models. Evolution 64:1231鈥?244
    29. Miller RS (1967) Pattern and process in competition. Adv Ecol Res 4:1鈥?4 CrossRef
    30. Nakazato T, Bogonovich M, Moyle LC (2008) Environmental factors predict adaptive phenotypic differentiation within and between two wild Andean tomatoes. Evolution 62:774鈥?92 CrossRef
    31. Pearson RG, Dawson TP, Liu C (2004) Modelling species distributions in Britain: a hierarchical integration of climate and land-cover data. Ecography 27:285鈥?98 CrossRef
    32. Pearson RG, Raxworthy CJ, Nakamura M, Peterson AT (2007) Predicting species distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar. J Biogeogr 34:102鈥?17 CrossRef
    33. Peterson AT, Soberon J, Sanchez-Cordero V (1999) Conservatism of ecological niches in evolutionary time. Science 285:1265鈥?267 CrossRef
    34. Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Model 190:231鈥?59 CrossRef
    35. R Development Core Team (2008) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria
    36. Ricklefs RE (2010) Evolutionary diversification, coevolution between populations and their antagonists, and the filling of niche space. Proc Natl Acad Sci USA 107:1265鈥?272 CrossRef
    37. Rundle HD, Nosil P (2005) Ecological speciation. Ecol Lett 8:336鈥?52 CrossRef
    38. Schluter D (2001) Ecology and the origin of species. Trends Ecol Evol 16:372鈥?80 CrossRef
    39. Schluter D (2009) Evidence for ecological speciation and its alternative. Science 323:737鈥?41 CrossRef
    40. Schoener TW (1968) The / Anolis lizards of Bimini: resource partitioning in a complex fauna. Ecology 49:704鈥?26 CrossRef
    41. Sillero N (2011) What does ecological modelling model? A proposed classification of ecological niche models based on their underlying methods. Ecol Model 222:1343鈥?346 CrossRef
    42. Warren DL, Glor RE, Turelli M (2008) Environmental niche equivalency versus conservatism: quantitative approaches to niche evolution. Evolution 62:2868鈥?883 CrossRef
    43. Wiens JJ (2004) Speciation and ecology revisited: phylogenetic niche conservatism and the origin of species. Evolution 58:193鈥?97
    44. Wiens JJ, Graham CH (2005) Niche conservatism: integrating evolution, ecology, and conservation biology. Annu Rev Ecol Evol Syst 36:519鈥?39 CrossRef
    45. Wiens JA, Stralberg D, Jongsomjit D, Howell CA, Snyder MA (2009) Niches, models, and climate change: assessing the assumptions and uncertainties. Proc Natl Acad Sci USA 106:19729鈥?9736 CrossRef
  • 作者单位:A. Khimoun (1) (2)
    J. Cornuault (1) (2)
    M. Burrus (1) (2)
    B. Pujol (1) (2)
    C. Thebaud (1) (2)
    C. Andalo (1) (2)

    1. Laboratoire Evolution et Diversit茅 Biologique (EDB), UMR5174, Universit茅 de Toulouse (UPS), 118 route de Narbonne, 31062, Toulouse cedex 9, France
    2. Laboratoire Evolution et Diversit茅 Biologique (EDB), UMR5174, CNRS, 31062, Toulouse cedex 9, France
  • ISSN:1573-8477
文摘
Using a species distribution model, we reconstructed the environmental niches of Antirrhinum majus pseudomajus and Antirrhinum majus striatum, two closely related species with parapatric distributions. We tested whether retention of ancestral environmental niche (i.e. niche conservatism) or adaptation to different ecological conditions (i.e. niche divergence) could explain the maintenance of their non-overlapping geographic ranges. We found that the environmental niche of A. m. pseudomajus is almost twice as large as that of A. m. striatum, with substantial overlap indicating that A. m. pseudomajus and A. m. striatum should co-occur frequently within the geographic range of A. m. striatum. By analysing contact zones where both subspecies are geographically close, we found that the presence of one subspecies instead of the other was significantly influenced by particular combinations of climatic factors. Since independent genetic evidence indicates that the two subspecies have experienced phases of range overlap at or near contact zones over the course of their evolutionary history, we propose that ecological niche displacement might be an important factor in explaining the absence of current range overlap between A. majus subspecies.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700