PIXE-electrophoresis shows starving collembolan reallocates protein-bound metals
详细信息    查看全文
  • 作者:Göran Bengtsson ; Jan Pallon ; Christina Nilsson ; Rita Triebskorn…
  • 关键词:Collembola ; Metal ; Protein ; PIXE ; Electrophoresis ; Starvation ; Metallothionein ; Metalloprotein ; PAGE
  • 刊名:Ecotoxicology
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:25
  • 期:1
  • 页码:115-120
  • 全文大小:605 KB
  • 参考文献:Amiard J-C, Amiard-Triquet C, Barka S, Pellerin J, Rainbow PS (2006) Metallothioneins in aquatic invertebrates: their role in metal detoxification and their use as biomarkers. Aquat Toxicol 76:160–202CrossRef
    Babczyńska A, Wilczek G, Wilczek P, Szulińska E, Witas I (2011a) Metallothioneins and energy budget indices in cadmium and copper exposed spiders Agelena labyrinthica in relation to their developmental stage, gender and origin. Comp Biochem Physiol C 154:161–171
    Babczyńska A, Wilczek G, Szulińska E, Franiel I (2011b) Quantitative immunodetection of meallothioneins in relation to metals concentration in spiders from variously polluted areas. Ecotoxicol Environ Saf 74:1498–1503CrossRef
    Baudrimont M, Lemaire-Gony S, Ribeyre F, Metivaud J, Boudou A (1997) Seasonal variations of metallothionein concentrations in the Asiatic clam (Corbicula fluminea). Comp Biochem Physiol C 118:361–367
    Bengtsson G, Gunnarsson T (1984) A micromethod for the determination of metal ions in biological tissues by furnace atomic absorption spectrophotometry. Microchem J 29:282–287CrossRef
    Bengtsson G, Ek H, Rundgren S (1992) Evolutionary response of earthworms to long-term metal exposure. Oikos 63:289–297CrossRef
    Bertini I, Sigel A, Sigel H (2001) Handbook of metalloproteins. Marcel Dekker, New York
    Binet MRB, Ma R, McLeod CW, Poole RK (2003) Detection and characterization of zinc- and cadmium-binding proteins in Escherichia coli by gel electrophoresis and laser ablation-inductively coupled plasma-mass spectrometry. Anal Biochem 318:30–38CrossRef
    Bremner I, Davies NT (1975) The induction of metallothionein in rat liver by zinc injection and restriction of food intake. Biochem J 149:733–738CrossRef
    Capdevila M, Atrian S (2011) Metallothionein protein evolution: a miniassay. J Biol Inorg Chem 16:977–989CrossRef
    Dallinger R, Wieser W (1984) Molecular fractionation of Zn, Cu, Cd and Pb in the midgut gland of Helix Pomatia L. Comp Biochem Physiol C 79:125–129CrossRef
    Dallinger R, Berger B, Hunziger P, Kägi JHR (1997) Metallothionein in snail Cd and Cu metabolism. Nature 388:237–238CrossRef
    Dallinger R, Lagg B, Egg M, Schipflinger R, Chabicovsky M (2004) Cd accumulation and Cd-Metallothionein as a biomarker in Cepaea hortensis (Helcidae, Pulmonata) from laboratory exposure and metal-polluted habitats. Ecotoxicology 13:757–772CrossRef
    Degtyarenko K (2000) Bioinorganic motifs: towards functional classification of metalloproteins. Bioinformatics 16:851–864CrossRef
    den Besten PJ, Herwig HJ, Zandee DI, Voogt PA (1990) Cadmium accumulation and metallothionein-like proteins in the sea star Asterias rubens. Arch Environ Contam Toxicol 19:858–862CrossRef
    Engel DW, Brouwer M, Mercaldo-Allen R (2001) Effects of molting and environmental factors on trace metal body-burdens and hemocyanin concentrations in the American lobster, Homarus americanus. Mar Environ Res 52:257–269CrossRef
    Finger JM, Smith JD (1987) Molecular association of Cu, Zn, Cd and 210Po in the digestive gland of the squid Nototodarus gouldi. Mar Biol 95:87–91CrossRef
    Hashemi S, Kunwar PS, Blust R, De Boeck G (2008) Differential metallothionen induction patterns in fed and starved carp (Cyprinus carpio) during waterborne copper exposure. Environ Toxicol Chem 27:2154–2158CrossRef
    Hensbergen PJ, Donker MH, van Velzen MJM, Roelofs D, van der Schors RC, Hunziker PE, van Straalen NM (1999) Primary structure of a cadmium-induced metallothionein from the insect Orchesella cincta (Collembola). Eur J Biochem 259:197–203CrossRef
    Hensbergen PJ, Donker MH, Hunziger PE, van der Schors RC, van Straalen NM (2001) Two metal-binding peptides from the insect Orchesella cincta (Collembola) as a result of metallothionein cleavage. Insect Biochem Mol Biol 31:1105–1114CrossRef
    Holwerda DA (1991) Cadmium kinetics in freshwater clams. V. Cadmium-copper interaction in metal accumulation by Anodonta cygnea and characterization of the metal-binding protein. Arch Environ Contam Toxicol 21:432–437CrossRef
    Irving H, Williams RJP (1948) Order of stability of metal complexes. Nature 162:746–747CrossRef
    Janssen H, Dallinger R (1991) Diversification of cadmium-binding proteins due to different levels of contamination in Arion lusitanicus. Arch Environ Contam Toxicol 20:132–137CrossRef
    Jiménez I, Gotteland M, Zarzuelo A, Uauy R, Speisky H (1997) Loss of the metal binding properties of metallothionein induced by hydrogen peroxide and free radicals. Toxicology 120:37–46CrossRef
    Kägi JHR (1991) Overview of metallothionein. Methods Enzymol 205:613–626CrossRef
    Nejmeddine A, Sautiere P, Dhainaut-Courtois N, Baert J-L (1992) Isolation and characterization of a Cd-binding protein from Allolobophora caliginosa (Annelida, Oligochaeta): distinction from metallothioneins. Comp Biochem Physiol Pharmacol Toxicol Endocrinol 101:601–605CrossRef
    Nielsen JL, Abildtrup A, Christensen J, Watson P, Cox A, McLeod CW (1998) Laser ablation inductively coupled plasma-mass spectrometry in combination with gel electrophoresis: a new strategy for speciation of metal binding serum proteins. Spectrochim Acta Part B 53:339–345CrossRef
    Nordberg GF, Fowler BA, Nordberg M, Friberg LT (2007) Handbook on the toxicology of metals. Academic Press, Amsterdam Boston
    O’Halloran TV, Culotta VC (2000) Metallochaperones, an intracellular shuttle service for metal ions. J Biol Chem 275:25057–25060CrossRef
    Palacios Ò, Atrian S, Capdevila M (2011) Zn- and Cu-thioneins: a functional classification for metallothioneins? J Biol Inorg Chem 16:991–1009CrossRef
    Roegener J, Lutter P, Reinhardt R, Blüggel M, Meyer HE, Anselmetti D (2003) Ultrasensitive detection of unstained proteins in acrylamide gels by native UV fluorescence. Anal Chem 75:157–159CrossRef
    Rogival D, van Campenhout K, Goenaga Infante H, Hearn R, Scheirs J, Blust R (2007) Induction and metal speciation of metallothionein in wood mice (Apodemus sylvaticus) along a metal pollution gradient. Environ Toxicol Chem 26:506–514CrossRef
    Sato M, Bremner I (1993) Oxygen free radicals and metallothionein. Free Radic Biol Med 14:325–337CrossRef
    Serafim MA, Company RM, Bebianno MJ, Langston WJ (2002) Effect of temperature and size on metallothionein synthesis in the gill of Mytilus galloprovincialis exposed to cadmium. Mar Environ Res 54:361–365CrossRef
    Stürzenbaum SR, Winters C, Galay M, Morgan AJ, Kille P (2001) Metal ion trafficking in earthworms. Identification of a cadmium-specific metallothionein. J Biol Chem 276:34013–34018CrossRef
    Susnea I, Bernevic B, Wicke M, Ma L, Liu S, Schellander K, Przybylski M (2013) Application of MALDI-TOF-mass spectrometry to proteome analysis using stain-free gel electrophoresis. In: Cai Z, Liu S (eds) Applications of MALDI-TOF spectroscopy, Topics in current chemistry 331. Springer, Berlin, pp 37–54
    Sutherland DEK, Stillman MJ (2011) The „magic numbers“of metallothionein. Metallomics 3:444–463CrossRef
    Tainer JA, Roberts VA, Getzoff ED (1991) Metal-binding sites in proteins. Curr Opin Biotechnol 2:582–591CrossRef
    Ulrich W, Fiera C (2010) Environmental correlates of body size distributions of European springtails (Hexapoda: Collembola). Glob Ecol Biogeogr 19:905–915CrossRef
    Weiss W, Weiland F, Görg A (2009) Protein detection and quantitation technologies for gel-based proteome analysis. Proteomics Methods Mol Biol 564:59–82CrossRef
    Yamamura M, Mori T, Suzuki KT (1981) Metallothionein induced in the earthworm. Experentia 37:1187–1189CrossRef
  • 作者单位:Göran Bengtsson (1)
    Jan Pallon (2)
    Christina Nilsson (2)
    Rita Triebskorn (3) (4)
    Heinz-R. Köhler (3)

    1. Department of Ecology, University of Lund, Sölvegatan 37, 22362, Lund, Sweden
    2. Department of Nuclear Physics, Lund Institute of Technology, Sölvegatan 14, 22362, Lund, Sweden
    3. Animal Physiological Ecology, Institute of Evolution and Ecology, University of Tübingen, Auf der Morgenstelle 5, 72076, Tübingen, Germany
    4. Transfer Center Ecotoxicology and Ecophysiology, Blumenstrasse 13, 72108, Rottenburg, Germany
  • 刊物类别:Earth and Environmental Science
  • 刊物主题:Environment
    Environment
    Monitoring, Environmental Analysis and Environmental Ecotoxicology
    Ecology
    Environmental Management
  • 出版者:Springer Netherlands
  • ISSN:1573-3017
文摘
One of multiple functions of metalloproteins is to provide detoxification to excess metal levels in organisms. Here we address the induction and persistence of a range of low to high molecular weight copper- and zinc binding proteins in the collembolan species Tetrodontophora bielanensis exposed to copper- and zinc-enriched food, followed by a period of recovery from metal exposure, in absence and presence of food. After 10 days of feeding copper and zinc contaminated yeast, specimens were either moved to ample of leaf litter material from their woodland stand of origin or starved (no food offered). The molecular weight distribution of metal binding proteins was determined by native polyacryl gel electrophoresis. One gel was stained with Comassie brilliant blue and a duplicate gel dried and scanned for the amount of copper and zinc by particle-induced X-ray emission. Specimens exposed to copper and recovered from it with ample of food had copper bound to two groups of rather low molecular weight proteins (40–50 kDa) and two of intermediate size (70–80 kDa). Most zinc in specimens from the woodland stand was bound to two large proteins of about 104 and 106 kDa. The same proteins were holding some zinc in metal-exposed specimens, but most zinc was found in proteins <40 kDa in size. Specimens recovered from metal exposure in presence of ample of food had the same distribution pattern of zinc binding proteins, whereas starved specimens had zinc as well as copper mainly bound to two proteins of 8 and 10 kDa in size. Thus, the induction and distribution of copper- and zinc-binding proteins depend on exposure conditions, and the presence of low molecular weight binding proteins, characteristic of metallothioneins, was mainly limited to starving conditions.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700